www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - Unstetigkeit im Nullpunkt
Unstetigkeit im Nullpunkt < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unstetigkeit im Nullpunkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:31 Di 20.04.2010
Autor: gigi

Aufgabe
Untersuche die Funktion f(x,y)= [mm] \begin{cases} 0, & \mbox{für } x*y \mbox{=0} \\ 1, & \mbox{sonst} \end{cases} [/mm]   x,y [mm] \in \IR [/mm]
auf Stetigkeit im Nullpunkt!

HAllo,

ich kann die beiden partiellen Grenzwerte bilden und erhalte 0- f(x,y) ist also stetig bzgl x bzw y.
Insgesamt ist f(x,y) glaub ich im Nullpunkt aber unstetig. Ich weiß nur nicht warum und wie man sich das vielleicht auch anschaulich vorstellen kann!

Herzlichen Dank für jede Hilfe!

        
Bezug
Unstetigkeit im Nullpunkt: Antwort
Status: (Antwort) fertig Status 
Datum: 14:37 Di 20.04.2010
Autor: fred97

1. Betrachte f auf der x-Achse, also f(x,0). Was treibt f für x [mm] \to [/mm] 0 ?

1. Betrachte f auf der 1. Winkelhalbierenden, also f(x,x) ( x [mm] \ne [/mm] 0). Was treibt f für x [mm] \to [/mm] 0 ?

FRED

Bezug
                
Bezug
Unstetigkeit im Nullpunkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:52 Di 20.04.2010
Autor: gigi


> 1. Betrachte f auf der x-Achse, also f(x,0). Was treibt f
> für x [mm]\to[/mm] 0 ?


f geht gegen 0

> 1. Betrachte f auf der 1. Winkelhalbierenden, also f(x,x) (
> x [mm]\ne[/mm] 0). Was treibt f für x [mm]\to[/mm] 0 ?

f geht gegen 1? und weil die gw verschieden sind, ist f nicht stetig im punkt (0,0)?
naja, so richtig sicher bin ich nicht und kann mir wohl die funktion nicht vorstellen

>  
> FRED


danke, gigi

Bezug
                        
Bezug
Unstetigkeit im Nullpunkt: Antwort
Status: (Antwort) fertig Status 
Datum: 16:01 Di 20.04.2010
Autor: fred97


> > 1. Betrachte f auf der x-Achse, also f(x,0). Was treibt f
> > für x [mm]\to[/mm] 0 ?
>  
>
> f geht gegen 0

Ja


>  
> > 1. Betrachte f auf der 1. Winkelhalbierenden, also f(x,x) (
> > x [mm]\ne[/mm] 0). Was treibt f für x [mm]\to[/mm] 0 ?
>  
> f geht gegen 1?

Ja

> und weil die gw verschieden sind, ist f
> nicht stetig im punkt (0,0)?


Ja

>  naja, so richtig sicher bin ich nicht und kann mir wohl
> die funktion nicht vorstellen

Du kannst auch so argumentieren: [mm] $\limes_{x\rightarrow 0}f(x,x) [/mm] = 1 [mm] \ne [/mm] 0=f(0,0)$

FRED

>  >  
> > FRED
>
>
> danke, gigi


Bezug
                                
Bezug
Unstetigkeit im Nullpunkt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:11 Mi 21.04.2010
Autor: gigi

super, dankesehr!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]