www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Abbildungen und Matrizen" - Ungleichung Matrizenprodukt
Ungleichung Matrizenprodukt < Abbildungen+Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichung Matrizenprodukt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:44 Do 14.10.2010
Autor: papillon

Aufgabe
Zeigen Sie dass für die Matrix $A>0$ und die Vektoren $x$ und $y(t)$ mit $|y(t)| [mm] \le [/mm] k [mm] \ctimes [/mm] |t|$ die Abschätzung

[mm] $|2x^T [/mm] A y(t)| [mm] \le x^T [/mm] A x + [mm] y(t)^T [/mm] A y(t) [mm] \le x^T [/mm] A x + 2 [mm] \parallel [/mm] A [mm] \parallel [/mm] ( [mm] k^2 \ctimes |t|^2)$ [/mm]

gilt, wobei [mm] \parallel [/mm] A [mm] \parallel [/mm] die induzierte 2-norm der Matrix A darstellt.


Hallo,

leider gelingt es mir nicht, diese Abschätzung zu beweisen. Ich kann zeigen, dass gilt

[mm] $-2x^T [/mm] A y(t) [mm] \le x^T [/mm] A x + [mm] y(t)^T [/mm] A y(t)$,

indem ich einfach das Produkt

[mm] $\pmat{x^TP & y^T} \pmat{P^-1 & I \\ I & P} \pmat{P^Tx\\y}\ge0$ [/mm]
mit  [mm] $\pmat{P^{-1} & I \\ I & P}\ge [/mm] 0$ auswerte. Aber damit ist der erste Teil der zu beweisenden Ungleichung ja noch nicht gezeigt, und außerdem bleibt noch der zweite Teil zu beweisen. Hat da jemand eine Idee?

Vielen Dank schonmal!

        
Bezug
Ungleichung Matrizenprodukt: Antwort
Status: (Antwort) fertig Status 
Datum: 14:37 Fr 15.10.2010
Autor: rainerS

Hallo!

> Zeigen Sie dass für die Matrix [mm]A>0[/mm] und die Vektoren [mm]x[/mm] und
> [mm]y(t)[/mm] mit [mm]|y(t)| \le k \ctimes |t|[/mm] die Abschätzung
>  
> [mm]|2x^T A y(t)| \le x^T A x + y(t)^T A y(t) \le x^T A x + 2 \parallel A \parallel ( k^2 \ctimes |t|^2)[/mm]
>  
> gilt, wobei [mm]\parallel[/mm] A [mm]\parallel[/mm] die induzierte 2-norm der
> Matrix A darstellt.
>  
> Hallo,
>  
> leider gelingt es mir nicht, diese Abschätzung zu
> beweisen. Ich kann zeigen, dass gilt
>  
> [mm]-2x^T A y(t) \le x^T A x + y(t)^T A y(t)[/mm],
>  
> indem ich einfach das Produkt
>
> [mm]\pmat{x^TP & y^T} \pmat{P^-1 & I \\ I & P} \pmat{P^Tx\\y}\ge0[/mm]
>  
> mit  [mm]\pmat{P^{-1} & I \\ I & P}\ge 0[/mm] auswerte. Aber damit
> ist der erste Teil der zu beweisenden Ungleichung ja noch
> nicht gezeigt, und außerdem bleibt noch der zweite Teil zu
> beweisen. Hat da jemand eine Idee?

Was bedeutet denn $A>0$? Positiv definit? Wenn ja:

Die zweite Ungleichung ist ja im wesentlichen $ [mm] y(t)^T [/mm] A [mm] y(t)\le [/mm] 2 [mm] \parallel [/mm] A [mm] \parallel [/mm] ( [mm] k^2 \ctimes |t|^2)$, [/mm] das sollte recht einfach aus der Definition der Matrixnorm folgen.

Und für die erste Ungleichung würde ich

[mm](x+y(t))^TA(x+y(t)) [/mm]

anschauen. Wenn A positiv definit ist, ist dies ja immer [mm] $\ge [/mm] 0$.

Viele Grüße
   Rainer


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]