www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Unendlicher Kettenbruch
Unendlicher Kettenbruch < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unendlicher Kettenbruch: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:11 Mi 19.08.2015
Autor: SinistresFlagellum

Aufgabe
Bestimme den Wert des folgenden unendlichen Kettenbruches

[math] 1 + \frac{2 + \frac{4 + \frac{8 + \cdots }{12+ \cdots}}{6 + \frac{12 + \cdots}{ 18 + \cdots}}}{3 + \frac{6 + \frac{12 + \cdots}{18 + \cdots}}{9 + \frac{18 + \cdots}{ 27 + \cdots}}} [/math]

Ich habe keine Idee, was der Wert sein könnte oder wie ich es beweisen soll.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Unendlicher Kettenbruch: Antwort
Status: (Antwort) fertig Status 
Datum: 17:14 Mi 19.08.2015
Autor: abakus


> Bestimme den Wert des folgenden unendlichen Kettenbruches

>

> [math] > 1 + \frac{2 + \frac{4 + \frac{8 + \cdots }{12+ \cdots}}{6 + \frac{12 + \cdots}{ 18 + \cdots}}}{3 + \frac{6 + \frac{12 + \cdots}{18 + \cdots}}{9 + \frac{18 + \cdots}{ 27 + \cdots}}} > [/math]

>

> Ich habe keine Idee, was der Wert sein könnte 

Ich auch nicht. Aber wenn ich die Aufgabe lösen müsste, würde ich jetzt anfangen zu arbeiten.
Naheliegend ist die Aufstellung einer Folge von endlichen Kettenbrüchen, die eine immer bessere Annäherung an den tatsächlichen Wert geben.
Wir steigen Schritt für Schritt eine Bruchebene tiefer.
Der erste Wert ist 1.
Der zweite Wert ist [mm]1+ \frac{2}{3}= \frac{5}{3}[/mm].
Der dritte Wert ist [mm]1+ \frac{2+ \frac{4}{6}}{3+ \frac{6}{9}}= \frac{19}{11}[/mm]
Der vierte Wert ist (wenn ich mich nicht verrechnet habe) [mm] $\frac{134}{107}$. [/mm] Jetzt ein Bildungsgesetz suchen und es induktiv beweisen.

Bezug
                
Bezug
Unendlicher Kettenbruch: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:46 Mi 19.08.2015
Autor: SinistresFlagellum


> Der vierte Wert ist (wenn ich mich nicht verrechnet habe)
> [mm]\frac{134}{107}[/mm].

Der Vierte Wert ist [mm] $\frac{1853}{1070}$. [/mm] Ich vermute daher, dass es [mm] $\sqrt{3}$ [/mm] sein könnte.

> Jetzt ein Bildungsgesetz suchen

Irgendwelche Tipps? Für ein Bildungsgesetz fehlt mir jeglicher Hinweis. Es wird wahrscheinlich in etwa so aussehen [mm] $a_{n} [/mm] = n + [mm] \frac{a_{2n}}{a_{3n}}$ [/mm]

Bezug
                        
Bezug
Unendlicher Kettenbruch: Antwort
Status: (Antwort) fertig Status 
Datum: 19:10 Mi 19.08.2015
Autor: abakus


> > Der vierte Wert ist (wenn ich mich nicht verrechnet habe)
> > [mm]\frac{134}{107}[/mm].

>

> Der Vierte Wert ist [mm]\frac{1853}{1070}[/mm]. Ich vermute daher,
> dass es [mm]\sqrt{3}[/mm] sein könnte.

>

> > Jetzt ein Bildungsgesetz suchen

>

> Irgendwelche Tipps? Für ein Bildungsgesetz fehlt mir
> jeglicher Hinweis. Es wird wahrscheinlich in etwa so
> aussehen [mm]a_{n} = n + \frac{a_{2n}}{a_{3n}}[/mm]

Eine ganz blöde Idee:
Wenn tatsächlich
[mm] 1 + \frac{2 + \frac{4 + \frac{8 + \cdots }{12+ \cdots}}{6 + \frac{12 + \cdots}{ 18 + \cdots}}}{3 + \frac{6 + \frac{12 + \cdots}{18 + \cdots}}{9 + \frac{18 + \cdots}{ 27 + \cdots}}} =\sqrt3 [/mm] gilt,
dann wäre  [mm]  \frac{2 + \frac{4 + \frac{8 + \cdots }{12+ \cdots}}{6 + \frac{12 + \cdots}{ 18 + \cdots}}}{3 + \frac{6 + \frac{12 + \cdots}{18 + \cdots}}{9 + \frac{18 + \cdots}{ 27 + \cdots}}} =\sqrt3 -1[/mm] 
und
 [mm] 2 + \frac{2 + \frac{4 + \frac{8 + \cdots }{12+ \cdots}}{6 + \frac{12 + \cdots}{ 18 + \cdots}}}{3 + \frac{6 + \frac{12 + \cdots}{18 + \cdots}}{9 + \frac{18 + \cdots}{ 27 + \cdots}}} =\sqrt3 +1 [/mm] 
Das Produkt dieser beiden Terme müsste 3-1=2 ergeben.
Jetzt weiß ich auch nicht weiter...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]