www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Umkehrfunktion
Umkehrfunktion < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umkehrfunktion: Korrektur
Status: (Frage) beantwortet Status 
Datum: 20:25 So 27.07.2014
Autor: arbeitsamt

Aufgabe
Betrachten Sie

a) [mm] f(x)=\bruch{1}{1+sin^2(x)} [/mm]

b) [mm] f(x)=\bruch{1}{1+sin(x^2)} [/mm]

und geben Sie jeweils ein möglichst großes Intervall an, auf dem die Funktionen umkehrbar sind. Berechnen Sie die Umkehrfunktionen und rechnen Sie nach, dass

[mm] f^{-1}(f(x))=x [/mm] für alle x und [mm] f(f^{-1}(y))=y [/mm] für alle y


a) [mm] f(x)=\bruch{1}{1+sin^2(x)} [/mm]

f(x)=y

[mm] y=\bruch{1}{1+sin^2(x)} [/mm]

[mm] sin(x)=+-\wurzel{\bruch{1}{y}-1} [/mm]

[mm] f^{-1}(y)=arcsin(+-\wurzel{\bruch{1}{y}-1}) [/mm]

[mm] f^{-1}(x)=arcsin(+-\wurzel{\bruch{1}{x}-1}) [/mm]

für [mm] x\not=0 [/mm]

für [mm] y\not=0 [/mm]

richtig soweit? muss ich fall unterscheidungen machen?

        
Bezug
Umkehrfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 22:01 So 27.07.2014
Autor: chrisno

Nicht richtig soweit.

Eine Funktion ist eine eindeutige Zuordnung. An welcher Stelle verstößt Du gegen diesen Teil der Definition.

Weiterhin: der maximale Definitionsbereich der Umkehrfunktion ist falsch. Suche nach reellen Zahlen, für die der Funktionsterm nicht definiert ist.

Hast Du Dir mal den verlauf der Funktion skizziert? Falls es Dir an einem Programm dafür fehlt, geht es auch mit Nachdenken und einer Wertetabelle.




Bezug
                
Bezug
Umkehrfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:49 So 27.07.2014
Autor: arbeitsamt


> Eine Funktion ist eine eindeutige Zuordnung. An welcher
> Stelle verstößt Du gegen diesen Teil der Definition.

wahrscheinlich als ich die wurzel gezogen habe.

richtig wäre

[mm] f^{-1}(y)=arcsin(\wurzel{\bruch{1}{y}-1}) [/mm]

[mm] f^{-1}(x)=arcsin(\wurzel{\bruch{1}{x}-1}) [/mm]


> Weiterhin: der maximale Definitionsbereich der
> Umkehrfunktion ist falsch. Suche nach reellen Zahlen, für
> die der Funktionsterm nicht definiert ist.

definitionsbereich [mm] -1\ge x\ge1 [/mm] ohne 0

Bezug
                
Bezug
Umkehrfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:40 Mo 28.07.2014
Autor: Marcel

Hallo Chrisno,

> Nicht richtig soweit.
>  
> Eine Funktion ist eine eindeutige Zuordnung. An welcher
> Stelle verstößt Du gegen diesen Teil der Definition.
>  
> Weiterhin: der maximale Definitionsbereich der
> Umkehrfunktion ist falsch.

"den" wird es auch nicht geben. Hier spricht man besser von EINEM maximalen
Definitionsbereich. Beispiel:

Ich kann, für [mm] $f(x)=|x|\,$ [/mm] als Funktion [mm] $\IR \to [0,\infty)$ [/mm]

   -  deren Einschränkung auf [mm] $[0,\infty)$ [/mm]

als auch

   -  deren Einschränkung auf [mm] $(-\infty,0]$ [/mm]

umkehren. Das sind "schöne, *zusammenhängende* Mengen". Ich kann
aber sogar

   -  deren Einschränkung auf [mm] $((-\infty,0] \setminus (-\IN)) \cup \IN$ [/mm]

umkehren. Der letzte Definitionsbereich ist nicht mehr zusammenhängend...

Gruß,
  Marcel


Bezug
        
Bezug
Umkehrfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 01:17 Mo 28.07.2014
Autor: Marcel

Hallo,

> Betrachten Sie
>  
> a) [mm]f(x)=\bruch{1}{1+sin^2(x)}[/mm]
>  
> b) [mm]f(x)=\bruch{1}{1+sin(x^2)}[/mm]
>  
> und geben Sie jeweils ein möglichst großes Intervall an,
> auf dem die Funktionen umkehrbar sind. Berechnen Sie die
> Umkehrfunktionen und rechnen Sie nach, dass
>  
> [mm]f^{-1}(f(x))=x[/mm] für alle x und [mm]f(f^{-1}(y))=y[/mm] für alle y
>  
> a) [mm]f(x)=\bruch{1}{1+sin^2(x)}[/mm]
>  
> f(x)=y
>  
> [mm]y=\bruch{1}{1+sin^2(x)}[/mm]
>  
> [mm]sin(x)=+-\wurzel{\bruch{1}{y}-1}[/mm]
>  
> [mm]f^{-1}(y)=arcsin(+-\wurzel{\bruch{1}{y}-1})[/mm]
>  
> [mm]f^{-1}(x)=arcsin(+-\wurzel{\bruch{1}{x}-1})[/mm]
>  
> für [mm]x\not=0[/mm]
>  
> für [mm]y\not=0[/mm]
>  
> richtig soweit? muss ich fall unterscheidungen machen?

es wurde ja schon was dazu gesagt. Ich empfehle folgendes:
Überlege Dir erstmal einen größtmöglichen Definitionsbereich, der
zusammenhängend ist (das kann man sich bei Intervallen gut vorstellen:
es gibt keine 'isolierten' Punkte), auf dem die Funktion injektiv ist.
Für die Surjektivität brauchen wir dann das Bild unter [mm] $f\,$ [/mm] dieses
Definitionsbereiches. Entsprechend bauen wir eigentlich eine neue,
bijektive Funktion, die dann auch umkehrbar ist. Und das geht dann
auch beim Berechnen der Umkehrfunktion mit ein.

D.h., wir betrachten bspw. nun

    $g [mm] \colon [-\pi/2,\;0] \to [1/2,\;1]$ [/mm]

mit

    [mm] $g(x):=\frac{1}{1+\sin^2(x)}\,.$ [/mm]

Wie finden wir nun den Term für die Umkehrfunktion? Naja:
Für $y [mm] \in [1/2,\;1]$ [/mm] suchen wir ein (eindeutig bestimmtes) $x [mm] \in [-\pi/2,\;0]$ [/mm] mit

    [mm] $g(x)=y\,,$ [/mm]

also

    (I) [mm] $y=\frac{1}{1+\sin^2(x)}\,.$ [/mm]

Alles kein Ding, es wird genau so gerechnet, wie Du es getan hast, jedenfalls
bis zu einem gewissen Punkt:

    (I) [mm] $\gdw$ $\sin^2(x)=\frac{1}{y}-1\,.$ [/mm]

Hier darf das Kontrollauge auch schonmal mitwirken, und beobachten,
dass für $1/2 [mm] \le [/mm] y [mm] \le [/mm] 1$ auch $0 [mm] \le \frac{1}{y}-1\le [/mm] 1$ gilt. Aber das nur nebenher.

Es darf also durchaus

    (I) [mm] $\gdw$ [/mm]

    (II) [mm] $|\sin(x)|=\sqrt{\frac{1}{y}-1}$ [/mm]

gefolgert werden.

Beim nächsten Schritt sollten wir wachsam sein: Wir suchen ja [mm] $x\,$ [/mm] mit

    [mm] $\red{-\pi/2} $\red{\le}$ $\red{x \le 0}$ [/mm] und [mm] $|\sin(x)|=\sqrt{\frac{1}{y}-1}\,.$ [/mm]

Entsprechend ist (II) äquivalent zu

    [mm] $\sin(x)=-\sqrt{\frac{1}{y}-1}\,.$ [/mm]

Hier wäre also

    [mm] $x=\text{arcsin}\left(-\sqrt{\frac{1}{y}-1}\right)$ [/mm]

hinzuschreiben.

Die Umkehrfunktion würde ich persönlich dann auch entweder in der Form

    [mm] $g^{-1} \colon [1/2,\;1] \ni [/mm] y [mm] \mapsto g^{-1}(y):=\text{arcsin}\left(-\sqrt{\frac{1}{y}-1}\right) \in [-\pi/2,\;0]$ [/mm]

schreiben, oder mit einer anderen Variablen:

    [mm] $g^{-1} \colon [1/2,\;1] \to [-\pi/2,\;0]$ [/mm]

wird definiert durch

    [mm] $g^{-1}(t):=\text{arcsin}\left(-\sqrt{\frac{1}{t}-1}\right)\,.$ [/mm]

Du siehst hier auch schön: Der Definitionsbereich von [mm] $g\,$ [/mm] ist der Zielbereich
von [mm] $g^{-1}\,,$ [/mm] und der Zielbereich von [mm] $g\,$ [/mm] ist der Definitionsbereich von [mm] $g^{-1}\,.$ [/mm]

Schreibe ich mal

    $h [mm] \colon [/mm] D [mm] \to [/mm] Z$

und sei [mm] $h\,$ [/mm] bijektiv, dann muss [mm] $h^{-1} \colon [/mm] Z [mm] \to [/mm] D$ zudem erfüllen:

    $h [mm] \circ h^{-1}=\text{id}_Z$ [/mm] und [mm] $h^{-1} \circ h=\text{id}_D\,.$ [/mm]

Sowas solltest Du ja auch nachrechnen. In meiner Version hätte ich nun
noch nachzurechnen:

    1. Für alle $x [mm] \in [-\pi/2,\;0]$ [/mm] gilt

         [mm] $(g^{-1} \circ g)(x)=\text{id}_{[-\pi/2,\;0]}(x)=x$ [/mm]

sowie

    2. Für alle $y [mm] \in [1/2\;,1]$ [/mm] gilt

         $(g [mm] \circ g^{-1})(y)=\text{id}_{[1/2,\;1]}(y)=y\,.$ [/mm]

P.S. Zeichne Dir mal den Graphen von [mm] $g\,$ [/mm] (das ist ja nur der Graph von [mm] $f\,,$ [/mm]
wobei Du dort nur das "Graphenstück für [mm] $-\pi/2\le [/mm] x [mm] \le [/mm] 0$ brauchst). Dann
spiegele diesen an der Geraden [mm] $y=x\,$ [/mm] (45°-Gerade im ersten Quadranten).
Das, was Du siehst, sollte mit dem übereinstimmen, was Du siehst, wenn Du
den Graphen von [mm] $g^{-1}$ [/mm] zeichnest!

Diesen Zusammenhang kann man sich auch geometrisch herleiten:
Sei $h [mm] \colon [/mm] D [mm] \to [/mm] Z$ eine bijektive Funktion mit $D,Z [mm] \subseteq \IR\,.$ [/mm] Dann ist
der Graph von [mm] $h\,$ [/mm] gerade die Menge

    [mm] $\{(x,y) \text{ mit }\;\;y=h(x):\;\; x \in D\}\,.$ [/mm]

Das Bild, was durch Spiegelung dieses Graphen an der genannten 45°-Geraden
entsteht, ist nun nichts anderes als

    [mm] $\{(y,x) \text{ mit }\;\; y=h(x):\;\; x \in D\}\,.$ [/mm]

Wegen der Bijektivität kann die letzte Menge als

    [mm] $\{(y,h^{-1}(y)):\;\; y \in Z\}$ [/mm]

geschrieben werden. (Denn: $y=h(x)$ ist dann äquivalent zu [mm] $x=h^{-1}(y)\,,$ [/mm] mit
[mm] $h^{-1} \colon [/mm] Z [mm] \to [/mm] D$ als Umkehrfunktion zu [mm] $h\,.$) [/mm]

Das ist aber nichts anderes als der Graph von [mm] $h^{-1}\,.$ [/mm]

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]