www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Umformung einer Gleichung
Umformung einer Gleichung < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umformung einer Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:44 Sa 12.08.2006
Autor: Clemens19

Hallo,

Ich habe folgende Gleichung

[mm] \bruch{\summe_{i}^{}\summe_{j \not=i}^{}Q_{ij}w_{i}w_{j}}{\summe_{i}^{}\summe_{j \not=i}^{}w_{i}w_{j}}= \bruch{\alpha^{2}-\beta^{2}}{\gamma^{2}-\beta^{2}} [/mm]

mit [mm] \alpha^{2}=W^{T}QW, \beta^{2}=\summe_{i}^{}w_{i}^{2} [/mm]
[mm] \gamma^{2}=(\summe_{i}^{}w_{i})^{2}, W=(w_{1}...w_{S})^{T} [/mm]
und [mm] Q_{ii}=1 [/mm]
Die Matrix Q ist eine Korrelationsmatrix und mit dieser Formel(also mit der rechten bzw linken Seite der Gleichung) soll die Durchschnittskorrelation der Matrix Q berechnet werden. Der Vektor W beschreibt hierbei die Gewichte der einzelnen Faktoren.
Wie kann durch Umformung der linken Seite auf die rechte Seite kommen?
Ich habe leider keinen blassen Schimmer wie ich hierbei vorgehen muß.
Kann mir von euch jemand helfen?



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Umformung einer Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:15 Sa 12.08.2006
Autor: felixf

Hallo Clemens!

> Ich habe folgende Gleichung
>  
> [mm]\bruch{\summe_{i}^{}\summe_{j \not=i}^{}Q_{ij}w_{i}w_{j}}{\summe_{i}^{}\summe_{j \not=i}^{}w_{i}w_{j}}= \bruch{\alpha^{2}-\beta^{2}}{\gamma^{2}-\beta^{2}}[/mm]
>  
> mit [mm]\alpha^{2}=W^{T}QW, \beta^{2}=\summe_{i}^{}w_{i}^{2}[/mm]
>  
> [mm]\gamma^{2}=(\summe_{i}^{}w_{i})^{2}, W=(w_{1}...w_{S})^{T}[/mm]
>  
> und [mm]Q_{ii}=1[/mm]
>  Die Matrix Q ist eine Korrelationsmatrix und mit dieser
> Formel(also mit der rechten bzw linken Seite der Gleichung)

Insbesondere ist also [mm] $Q_{ii} [/mm] = 1$ fuer alle $i$. Das braucht man hier. Du kannst naemlich damit den Bruch auf der linken Seite schreiben als [mm] $\frac{\sum_i \sum_j Q_{ij} w_i w_j - \sum_i Q_{ii} w_i^2}{\sum_i \sum_j w_i w_j - \sum_i w_i^2}$. [/mm] Jetzt steht eigentlich genau die rechte Seite da, wenn du mal die Ausdruecke [mm] $\alpha^2$, $\beta^2$ [/mm] und [mm] $\gamma^2$ [/mm] ausrechnest.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]