Tschebyschow < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Hierzu gibt es keine Aufgabenstellung |
Zuerst mal: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
So Hallo Leute,
ich habe folgende allgemeine Frage: Warum muss ich wenn ich eine Folge von iid ZV habe beim Anwenden der Tschebyschow Ungleichung den Erwartungswert und die Varianz über den empirischen Mittelwert einsetzen und bei der selben Abschätzung mit dem zentralen Grenzwertsatz nicht, d.h. die normalen Momente?
Es tut mir echt leid, dass ich die Frage nicht besser formulieren kann, aber bin kein Mathematiker und hab über beides wenn's hochkommt eine Doppelstunde Vorlesung gehört und zwei Aufgaben gesehen. Ich würd's nur gern verstehen, da mich Samstag die Klausur dazu erwartet.
Vielen Dank im Vorraus und bitte helft mir. Ich hoffe es gibt eine simple Erklärung dazu.
Beste Grüße
So jetzt kommt noch ein Nachtrag:
Wir haben die Tschbyschow Ungleichung in der Übung folgendermaßen definiert:
Sei $ [mm] X:\Omega\to\IR [/mm] $ eine Zufallsvariable mit [mm] $EX^2<\infty$.
[/mm]
Dann gilt für jedes [mm] $\varepsilon>0$:
[/mm]
[mm] $P(|X-EX|>\varepsilon)<=\bruch{Var(X)}{\varepsilon^2}$
[/mm]
Insbesondere die Varianz verschafft mir hierbei die Probleme, denn die hier immer verwendete ist [mm] $Var(\overline{X_{n}})=\bruch{Var(X_{i})}{n}$ [/mm] und ich frage mich lediglich wie man das aus der Definition herauslesen kann.
(Beim Erwartunswert macht es ja "keinen" Unterschied, denn [mm] $E(\overline{X_{n}})=EX_{i}$)
[/mm]
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 23:08 Do 12.08.2010 | Autor: | DesterX |
Hallo.
Ich kenne die T-Ungleichung so,
sei X eine [mm] $\IR$-wertige [/mm] Zufallsvariable mit endlicher Varianz und [mm] $\epsilon [/mm] > 0$. Dann gilt: $P(|X-E(X)| [mm] \ge \epsilon) \le \bruch{Var(X)}{\epsilon^2}$. [/mm]
Wie habt ihr sie denn formuliert? Es gibt ja auch noch einige weitere Varianten.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 10:24 Sa 14.08.2010 | Autor: | Infinit |
Hallo etechniker,
die Tschebyschow-Ungleichung gibt Dir doch eine untere Grenze für die Wahrscheinlichkeit an, dass ein Wert einer Zufallsvariable mit endlicher Varianz innerhalb eines bestimmten Bereiches um den Erwartungswert der Variablen liegt. Was benötigt wird, sind also Aussagen zu Erwartungswert und zu Varianz. Ob diese Aussagen wegen des Vorhandenseins einer Wahrscheinlichkeitsverteilung berechnet werden können oder ob man eine numerische Abschätzung macht durch das Auswerten empirisch ermittelter Größen, ist dabei egal.
Dies ist gerade der große Vorteil dieser Abschätzung, denn man kennt schließlich nicht bei allen stochastischen Prozessen die expliziten Informationen über die diesem Prozess zugrundeliegende Wahrscheinlichkeitsverteilung.
Dass eine empirische Abschätzung nicht so genaue Werte liefert wie eine analytisch berechenbare, das steht auf einem anderen Blatt.
Viele Grüße,
Infinit
|
|
|
|