www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Tschebyscheff-Polynome, Beweis
Tschebyscheff-Polynome, Beweis < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tschebyscheff-Polynome, Beweis: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 12:55 Sa 27.02.2016
Autor: sissile

Aufgabe
Tschebyscheff-Polynome [mm] T_n(x):=cos(n [/mm] arcccos(x)) für -1 [mm] \le [/mm] x [mm] \le [/mm] 1:

Satz:
Sei [mm] \psi \not\in [/mm] [-1,1]. Unter allen Polynomen [mm] p_n [/mm] vom Grad n mit [mm] p_n (\psi)=1 [/mm] minimiert [mm] p_n [/mm] = [mm] \frac{T_n}{T_n (\psi)} [/mm] die Maximumsnorm [mm] ||p_n||_{[-1,1]} [/mm] über [-1,1].




1) Ich komme mit dem Beweis nicht zurrecht!

Angenommen sei [mm] p_n [/mm] ein Polynom vom Grad n mit [mm] p_n (\psi)=1 [/mm] und [mm] ||p_n||_{[-1,1]} [/mm] < [mm] ||\frac{T_n}{T_n (\psi)}||_{[-1,1]} [/mm]

[mm] T_n [/mm] nimmt an [mm] x_k= cos(\frac{k\pi}{n}) \in [/mm] [-1,1]  für k=0,..,n seine Extrema an da [mm] T_n (x_k)= [/mm] cos( k [mm] \pi)= \pm [/mm] 1

[mm] \frac{T_n}{T_n (\psi)}(x_k) [/mm] = [mm] \pm \frac{1}{T_n (\psi)} [/mm]
Nach annahme an [mm] p_n [/mm] muss insbesondere [mm] |p_n(x_k)| [/mm] < [mm] |\pm \frac{1}{T_n (\psi)}| \forall [/mm] k [mm] \in \{0,..n\} [/mm]

Wie argumentiert man nun, dass [mm] (\frac{T_n}{T_n (\psi)} [/mm] - [mm] p_n) [/mm] (x) n+1 Nullstellen hat? Eine Nullstelle bei [mm] \psi [/mm] ist klar.
Aber wie sieht man die n Vorzeichen wechsel? Ich weiß doch alles nur betrgasmäßig bei der Maximumsnorm?


Frage 2)
Wie ist es möglich [mm] T_n (\psi) [/mm] zu schreiben, wenn die Tschebyscheff-Polynome da gar nicht definiert wurden? Wird das fortgesetzt? Wie genau kann ich mir da eine korrekte Fortesetzung definieren?
Liebe Grüße,
sissi

        
Bezug
Tschebyscheff-Polynome, Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 15:50 Sa 27.02.2016
Autor: hippias

Zu 2) Darüber habe ich mich auch gewundert. Aber wenn man eingesehen hat, dass [mm] $T_{n}$ [/mm] auf $[-1,1]$ eine Polynomfunktion ist, dann ist dies Polynom eindeutig bestimmt und seine Definitionsmenge ist natürlich ganz [mm] $\IR$: [/mm] voila, eine Fortsetzung!

Bezug
                
Bezug
Tschebyscheff-Polynome, Beweis: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 11:16 So 28.02.2016
Autor: sissile

Hallo,
Ja das scheint logisch zu sein, denn [mm] T_0(x)=1, T_1(x)=x [/mm] und [mm] T_n [/mm] erfüllt die Rekursion [mm] T_{n+1} [/mm] (x)= 2 x [mm] T_n [/mm] (x) - [mm] T_{n-1} [/mm] (x), n=1,2,3,..., und somit ist [mm] T_n [/mm] ein Polynom vom Grad n. Als solches ist es für alle x [mm] \in \mathbb{R} [/mm] wohldefiniert.

Kannst du mir bei dem Beweis der Aussage nocht weiterhelfen?
Die Idee ist es zu zeigen, dass [mm] (\frac{T_n}{T_n (\psi)} [/mm] - [mm] p_n) [/mm]  n+1Nullstellen hat - was im Widerspruch dazu steht, dass dieses Polynom n-Ten Grades hat. [mm] \psi [/mm] als Nullstelle konnte ich identifizieren- fehlen die anderen n Stück.

LG,
sissi

Bezug
                        
Bezug
Tschebyscheff-Polynome, Beweis: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:22 Di 01.03.2016
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]