www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Trigonometrie
Trigonometrie < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Trigonometrie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:10 Mi 11.06.2008
Autor: Lapuca

Aufgabe
berechne die seite c im (NICHT rechtwinkligem) Dreieck ABC mit a = 2,4cm  b= 5,6cm und [mm] \beta [/mm] = 83,62°

mit der aufgabe komme ich irgendwie nicht so ganz klar. mein mathelehrer meinte wir sollen da die pq formel anwenden, aber irgendwie ...  die kathetensätze sind ja nur [mm] a^{2} [/mm] = c * p   und  [mm] b^{2} [/mm] = c * q  
und damit kann ich ja schlecht c ausrechnen, oder?

ich hab es jetzt erstmal mit dem cosinussatz ausgerechnet, also

[mm] c^{2} [/mm] = [mm] a^{2} [/mm] + [mm] b^{2} [/mm] + 2ab * cos [mm] \beta [/mm]
[mm] c^{2} [/mm] = [mm] 2,4^{2} [/mm] + [mm] 5,6^{2}+ [/mm] 2*2,4*5,6 - cos83,62°
[mm] c^{2} [/mm] = 63,88  
=>  c = 7,99

meine erste frage wäre jetzt ob das überhaupt so stimmt,
und zweitens wie man das auch mit der pq formel ausrechnen kann.

vielen dank schon mal im vorraus!!

lg Lapuca



        
Bezug
Trigonometrie: Antwort
Status: (Antwort) fertig Status 
Datum: 18:23 Mi 11.06.2008
Autor: Somebody


> berechne die seite c im (NICHT rechtwinkligem) Dreieck ABC
> mit a = 2,4cm  b= 5,6cm und [mm]\beta[/mm] = 83,62°
>  
> mit der aufgabe komme ich irgendwie nicht so ganz klar.
> mein mathelehrer meinte wir sollen da die pq formel
> anwenden, aber irgendwie ...  die kathetensätze sind ja nur
> [mm]a^{2}[/mm] = c * p   und  [mm]b^{2}[/mm] = c * q  
> und damit kann ich ja schlecht c ausrechnen, oder?
>  
> ich hab es jetzt erstmal mit dem cosinussatz ausgerechnet,
> also
>
> [mm]c^{2}[/mm] = [mm]a^{2}[/mm] + [mm]b^{2}[/mm] [mm] \red{+} [/mm] 2ab * cos [mm]\red{\beta}[/mm]

Dies geht so nicht. Der Winkel beim [mm] $\cos$ [/mm] muss jeweils der Seite, deren quadrierte Länge auf der linken Seite des Cosinussatzes steht, gegenüberliegen. Richtig wäre allenfalls

[mm]c^2=a^2+b^2\red{-}2ab\cos(\red{\gamma})[/mm]


Aber dies nützt Dir vorerst nichts, weil sowohl $c$ als auch [mm] $\gamma$ [/mm] unbekannt sind.

Du kannst aber in einem ersten Schritt [mm] $\alpha$ [/mm] ausrechnen, und zwar mit Hilfe des Sinussatzes:

[mm]\frac{\sin(\alpha)}{a}=\frac{\sin(\beta)}{b}\Rightarrow \sin(\alpha)=\frac{a}{b}\sin(\beta)[/mm]

Wir haben hier Glück, dass $b$ die längere der gegebenen Seiten ist, deshalb ist [mm] $\alpha$ [/mm] eindeutig bestimmt (und gerade der Winkel, den Dir die [mm] $\sin^{-1}$-Funktion [/mm] Deines Taschenrechners, angewandt auf [mm] $\frac{a}{b}\sin(\beta)$, [/mm] liefert).

Hast Du [mm] $\alpha$ [/mm] bestimmt, kannst Du $c$ entweder mit der obigen, von mir richtiggestellten Version des Cosinussatzes [mm] ($\gamma=180^\circ-\alpha-\beta$) [/mm] berechnen, oder Du kannst auch den Sinussatz nochmals verwenden, denn es ist

[mm]\frac{c}{\sin(\gamma)}=\frac{b}{\sin(\beta)}\Rightarrow c=\frac{\sin(\gamma)}{\sin(\beta)}b[/mm]


Bezug
        
Bezug
Trigonometrie: Antwort
Status: (Antwort) fertig Status 
Datum: 18:59 Mi 11.06.2008
Autor: abakus


> berechne die seite c im (NICHT rechtwinkligem) Dreieck ABC
> mit a = 2,4cm  b= 5,6cm und [mm]\beta[/mm] = 83,62°
>  
> mit der aufgabe komme ich irgendwie nicht so ganz klar.
> mein mathelehrer meinte wir sollen da die pq formel
> anwenden, aber irgendwie ...  die kathetensätze sind ja nur
> [mm]a^{2}[/mm] = c * p   und  [mm]b^{2}[/mm] = c * q  
> und damit kann ich ja schlecht c ausrechnen, oder?
>  
> ich hab es jetzt erstmal mit dem cosinussatz ausgerechnet,
> also
>
> [mm]c^{2}[/mm] = [mm]a^{2}[/mm] + [mm]b^{2}[/mm] + 2ab * cos [mm]\beta[/mm]
>  [mm]c^{2}[/mm] = [mm]2,4^{2}[/mm] + [mm]5,6^{2}+[/mm] 2*2,4*5,6 - cos83,62°
>  [mm]c^{2}[/mm] = 63,88  
> =>  c = 7,99

>  
> meine erste frage wäre jetzt ob das überhaupt so stimmt,
>  und zweitens wie man das auch mit der pq formel ausrechnen
> kann.

Hallo,
es ist zwar ein ungewöhnlicher Weg, aber es funktioniert auch mit der pq-Formel.
Da nur [mm] \beta [/mm] als Winkel gegeben ist, muss der Ansatz
[mm] b^2=a^2+c^2-2ac*cos \beta [/mm]  lauten.
Da b, a und [mm] \beta [/mm] bekannt sind ist c die Unbekannte ist, handelt es sich um eine quadratische Gleichung mit der Variablen c. Die Umstellung auf Normalform liefert
[mm] c^2-2a\cos\beta [/mm] *c [mm] +a^2-b^2 [/mm] =0
(also mit [mm] p=-2a\cos\beta [/mm] und [mm] q=a^2-b^2). [/mm]
Gruß Abakus


>  
> vielen dank schon mal im vorraus!!
>  
> lg Lapuca
>  
>
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]