www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Trigon. Dreiecksberechnung
Trigon. Dreiecksberechnung < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Trigon. Dreiecksberechnung: Aufgabe zu einem Dreieck
Status: (Frage) beantwortet Status 
Datum: 18:17 Mo 23.02.2009
Autor: Database

Aufgabe
In der Figur (siehe Bild) seien a, b und [mm] \beta [/mm] gegeben. Berechne Strecke MH. Notiere dazu Schritt für Schritt das verwendete Dreieck und die verwendete Winkelfunktionen.

[Dateianhang nicht öffentlich]


Gegeben: a=5cm , b=2cm, [mm] \beta [/mm] = 30°

Rechenweg:

[mm] sin\beta=\bruch{a}{AB} [/mm] ; AB= [mm] \bruch{a}{sin\beta} [/mm] => AB=10cm

Lösung mit Pythagoras: CA = BA²-a²= 8,66cm

Lösung mit Pythagoras: MA = b²+BA² = 10,2cm

Berechnung von [mm] \varepsilon [/mm] => tan [mm] \varepsilon [/mm] = [mm] \bruch{b}{AB} [/mm] = 11,3°

[mm] \beta [/mm] + [mm] \varepsilon [/mm] = 41,3°

sin [mm] \beta [/mm] + [mm] \varepsilon= \bruch{MH}{MA}; [/mm] MH= (sin [mm] \beta [/mm] + [mm] \varepsilon)*MA [/mm] => 6,73cm

Das Ergebnis MH ist 6,73cm.

Ist dies korrekt?


Ich habe diese Frage in keinem anderen Forum gestellt.


Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
        
Bezug
Trigon. Dreiecksberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:30 Mo 23.02.2009
Autor: M.Rex

Hallo

> In der Figur (siehe Bild) seien a, b und [mm]\beta[/mm] gegeben.
> Berechne Strecke MH. Notiere dazu Schritt für Schritt das
> verwendete Dreieck und die verwendete Winkelfunktionen.
>  
> [Dateianhang nicht öffentlich]
>  
> Gegeben: a=5cm , b=2cm, [mm]\beta[/mm] = 30°
>  
> Rechenweg:
>  
> [mm]sin\beta=\bruch{a}{AB}[/mm] ; AB= [mm]\bruch{a}{sin\beta}[/mm] =>
> AB=10cm
>  
> Lösung mit Pythagoras: CA = BA²-a²= 8,66cm
>  
> Lösung mit Pythagoras: MA = b²+BA² = 10,2cm

Korrekt. Aber du solltest die Wurzel auch hinschreiben. Es gilt:

[mm] \overline{CA}=\red{\wurzel{BA²-a²}}\approx8,66 [/mm]

>  
> Berechnung von [mm]\varepsilon[/mm] => tan [mm]\varepsilon[/mm] =
> [mm]\bruch{b}{AB}[/mm] = 11,3°

Auch hier achte auf die Notation

Es gilt:

[mm] \tan(\varepsilon)=\bruch{b}{\overline{AB}} [/mm]
[mm] \Rightarrow \varepsilon=... [/mm]

Der Tangens hat keine Einheit, wie
[mm] \tan(\varepsilon)=\bruch{b}{AB}=11,3\red{°} [/mm]
suggeriert.

>  
> [mm]\beta[/mm] + [mm]\varepsilon[/mm] = 41,3°
>  
> sin [mm]\beta[/mm] + [mm]\varepsilon= \bruch{MH}{MA};[/mm] MH= (sin [mm]\beta[/mm] +
> [mm]\varepsilon)*MA[/mm] => 6,73cm
>  
> Das Ergebnis MH ist 6,73cm.

Auch hier fehlen ein paar klammern.
[mm] \sin\red{(}\beta+\varepsilon\red{)}= \bruch{MH}{MA} [/mm]


>  
> Ist dies korrekt?
>  
>
> Ich habe diese Frage in keinem anderen Forum gestellt.
>  

Die Werte habe ich jetzt nicht alle im TR überprüft sie sind aber plausibel (also in der passenden Grössenordung), aber die Rechenwege sind korrekt.

Marius

Bezug
        
Bezug
Trigon. Dreiecksberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:41 Mo 23.02.2009
Autor: Steffi21

Hallo, [mm] \overline{MH}=6,73cm [/mm] ist korrekt, Steffi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]