www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Triagonalisieren.
Triagonalisieren. < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Triagonalisieren.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:55 Di 27.05.2008
Autor: Woaze

Aufgabe
Triagonalisieren sie folgende Matrix: A [mm] =\pmat{ 1 & -1 & 0 \\ 2 & 1 & 1 \\ 0 & 2 & 1 } [/mm] in [mm] \IR [/mm]

So und ich schaffs aber einfach nicht.

Ich habe einen Eigenvektor gefunden: v = [mm] \pmat{ 1 \\ 0 \\ -2 }. [/mm] Und der stimmt.

[mm] \pmat{ 1 & -1 & 0 \\ 2 & 1 & 1 \\ 0 & 2 & 1 }*\pmat{ 1 \\ 0 \\ -2 } [/mm] = [mm] \pmat{ 1 \\ 0 \\ -2 }. [/mm]

Nun wähle ich die Basis [mm] (v,e_2,e_3) [/mm] und nach dem Basiswechsel müsste doch eigentlich sowas raus kommen: B [mm] =\pmat{ 1 & a_12 & a_13 \\ 0 & a_22 & a_23 \\ 0 & a_23 & a_33 } [/mm] Da eigenwert 1. Aber es klappt einfach nicht.

Das ist doch normal ein ganz harmloses Beispiel.
s^-1 = [mm] \pmat{ 1 & 0 & -2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 } [/mm]
s^-1As = B

        
Bezug
Triagonalisieren.: Antwort
Status: (Antwort) fertig Status 
Datum: 08:48 Mi 28.05.2008
Autor: angela.h.b.


> Triagonalisieren sie folgende Matrix: A [mm]=\pmat{ 1 & -1 & 0 \\ 2 & 1 & 1 \\ 0 & 2 & 1 }[/mm]
> in [mm]\IR[/mm]
>  So und ich schaffs aber einfach nicht.

Hallo,

immerhin wirst Du ja das charakteristische Polynom berechnet haben, welches Dir die Gewißheit gibt, daß die Matrix triangulierbar ist, also die Mühe nicht vergeblich.

>  
> Ich habe einen Eigenvektor gefunden: v = [mm]\pmat{ 1 \\ 0 \\ -2 }.[/mm]
> Und der stimmt.

Ja.

>  
> [mm]\pmat{ 1 & -1 & 0 \\ 2 & 1 & 1 \\ 0 & 2 & 1 }*\pmat{ 1 \\ 0 \\ -2 }[/mm]
> = [mm]\pmat{ 1 \\ 0 \\ -2 }.[/mm]
>
> Nun wähle ich die Basis [mm](v,e_2,e_3)[/mm] und nach dem
> Basiswechsel müsste doch eigentlich sowas raus kommen: B
> [mm]=\pmat{ 1 & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & a_{23} & a_{33} }[/mm]
> Da eigenwert 1. Aber es klappt einfach nicht.

Es muß klappen.

>  
> Das ist doch normal ein ganz harmloses Beispiel.
>  s^-1 = [mm]\pmat{ 1 & 0 & -2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 }[/mm]

Hier liegt der casus knacktuns: die Transformationsmatrix S für den Übergang von der Standardbasis zu Deiner neuen ist doch

[mm] S=\pmat{ 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 }, [/mm]

und diese hast Du falsch invertiert, insofern ist es nicht so verwunderlich, daß das Falsche herauskommt.

Generell:

Dir ist aber klar, daß Dein zweiter Basisvektor [mm] b_2 [/mm] so beschaffen sein muß, daß

[mm] Ab_2=kv+lb_2 [/mm] ergibt?

Den dritten kannst Du dann beliebig ergänzen.

Gruß v. Angela




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]