Transformationsmatrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Hallo,
ich stehe vor dem Problem, dass ich eine Transformationmatrix erstellen möchte, aber nicht weiß, wie ich das machen soll. Und zwar habe ich ein normales rechteckiges Bild und möchte dieses nun verzerren und zwar auch so, dass die Seiten nicht mehr parallel zueinander verlaufen.
Kann man anhand der neuen Eckpunkte die Matrix dazu erstellen?
Gruß
ein Friesenjung
PS: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt. ^^
|
|
|
|
> Hallo,
>
> ich stehe vor dem Problem, dass ich eine
> Transformationmatrix erstellen möchte, aber nicht weiß, wie
> ich das machen soll. Und zwar habe ich ein normales
> rechteckiges Bild und möchte dieses nun verzerren und zwar
> auch so, dass die Seiten nicht mehr parallel zueinander
> verlaufen.
Eine simple affine Abbildung kann es also nicht sein: denn affine Abbildungen (Transformationen der Ebene) sind parallelentreu.
> Kann man anhand der neuen Eckpunkte die Matrix dazu
> erstellen?
Eine einfache Lösung wäre eine billineare Abbildung. Will man etwa das Quadrat mit den Eckpunkten $(0|0)$, $(1|0)$, $(0|1)$ und $(1|1)$ auf das Viereck mit den Eckpunkten [mm] $P_{1,2,3,4}$ [/mm] abbilden, so leistet dies die durch
[mm]\pmat{x'\\y'}=(1-x)(1-y)\vec{OP}_1+x(1-y)\vec{OP}_2+(1-x)y\vec{OP}_3 +xy\vec{OP}_4[/mm]
definierte Abbildung.
Aber vielleicht schwebt Dir eine projektive Abbildung vor? Im allgemeinen Fall hat eine projektive Abbildung die Form
[mm]x'=\frac{ax+by+c}{gx+hy+i}; y'=\frac{dx+ey+f}{gx+hy+i}[/mm]
für geeignete Formparameter $a,b,c,d,e,f,g,h,i$. Die Werte dieser Formparameter für eine bestimmte Abbildung zu bestimmen, ist eine längliche Rechnung. Vielleicht suchst Du mal mit Google unter "inferring projective mappings" oder so.
|
|
|
|