www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Transformation Vektor
Transformation Vektor < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Transformation Vektor: Hilfe / Kontrolle Ansatz
Status: (Frage) überfällig Status 
Datum: 00:01 So 16.02.2014
Autor: berndbrot

Aufgabe
Zwischen Zylinderkoordinaten [mm] (r,\theta, [/mm] z) und kartesischen Koordinaten besteht der Zusammenhang: [mm] x=rcos\theta, y=rsin\theta, [/mm] z=z. An einem Punkt P auf der Zylinderoberfläche r=const. wird ein neues Koordinatensystem gewählt. x' in radialer Richtung, y' in tangentialer Richtung und z' in z Richtung.
a) Ermittle die Matrix A zur Berechnung von T' (3x3 Spannungsmatrix; Gleichung [mm] T'=A^{T}TA) [/mm]
b) Drücke die Komponenten eines Vektors [mm] t_{x'}, t_{y'}, t_{z'}(Spannungsvektor)auf [/mm] der Zylinderoberfläche an der stelle P  mit Hilfe der Elemente der original Matrix (Spannungsmatrix) T aus.

Hallo, bräuchte Hilfe mit obiger Aufgabe, speziell Aufgabenteil b)

Meine Lösung für a) ist wie folgt:

Matrix zur Transformation von kartesisch zu Zylinderkoordinaten:

[mm] A=\pmat{ cos\theta & sin\theta & 0 \\ -sin\theta & cos\theta & 0 \\ 0 & 0 & 1} [/mm]

Für Aufgabenteil b) bin mich mir nicht sicher. Hier mein Ansatz:
erstmal ist die Spannungsmatrix symmetrisch:

[mm] T=\pmat{ T_{11} & T_{12} & T_{13} \\ T_{12} & T_{22} & T_{23} \\ T_{13} & T_{23} & T_{33}} [/mm]

Gefragt ist nach dem Vektor im gestrichenen Koordinatensystem in Abhängigkeit von den Elementen in T:

[mm] \vec{t'}=A\vec{t} [/mm]        
[mm] \vec{t}=T\vec{n} [/mm]   -   wobei n der Normalenvektor der Ebene ist.

d.h.:

[mm] \vec{t'}=A(T\vec{n}) [/mm]

mit: [mm] \vec{n} [/mm] = [mm] \pmat{ r*cos\theta \\ r*sin\theta \\ 0 } [/mm] * [mm] \wurzel{(r*cos\theta)^{2}+(r*sin\theta)^{2}}=\pmat{ cos\theta \\ sin\theta \\ 0 } [/mm]

Ist der Ansatz bis hier her richtig???


Danke!!!  

        
Bezug
Transformation Vektor: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:19 So 16.02.2014
Autor: berndbrot

Gerade noch aufgefallen:

der Vektor n ist ja auch im gestrichenen Koordinatensystem gegeben, oder?!?!

Also müsste es ja heißen:

[mm] \vec{n'} [/mm] = [mm] \pmat{ r*cos\theta \\ r*sin\theta \\ 0 } [/mm] * [mm] \wurzel{(r*cos\theta)^{2}+(r*sin\theta)^{2}}=\pmat{ cos\theta \\ sin\theta \\ 0 } [/mm]

[mm] \vec{n}=A^{T}\vec{n'} [/mm]

Alles eingesetzt wäre dann:

[mm] \vec{t'}=A(T(A^{T}\vec{n'})) [/mm]

Bezug
        
Bezug
Transformation Vektor: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:20 Di 18.02.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]