www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Totale Differentiale berechnen
Totale Differentiale berechnen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Totale Differentiale berechnen: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 10:12 Do 23.02.2012
Autor: sveny-boi

Aufgabe
Gegeben sei die Funktion $ [mm] f(x_1,x_2) [/mm] = ( [mm] \alpha_1 x_1^p [/mm] + [mm] \alpha_2 x_2^p)^{1/p}$. [/mm]
Berechne nun [mm] $\sigma_{1,2} [/mm] = [mm] \frac{d ln (\frac{x_2}{x_1})}{d ln ( \frac {f_1(x_1,x_2)}{f_2(x_1,x_2)})} [/mm]

Ich habe das ganze mal seperat betrachtet.
Der Zähler ist doch folgendes:

$ d ln [mm] (\frac {x_2}{x_1}) [/mm] = dln [mm] x_2 [/mm] - dln [mm] x_1 [/mm] = [mm] \frac {1}{x_2} dx_2 [/mm] - [mm] \frac {1}{x_1} dx_1 [/mm] $

Stimmt das soweit?

Und der Nenner ist doch aus meiner Sicht:

$d ln ( [mm] \frac {f_1(x_1,x_2)}{f_2(x_1,x_2)}) [/mm] =d ln ( [mm] \frac {\alpha_1 * p * x_1^{p-1}}{\alpha_2 * p * x_2^\{p-1}}) [/mm] = [mm] \frac{\alpha_1}{\alpha_2} [/mm] * (p-1) * d ln [mm] (\frac {x_1}{x_2}) =\frac{\alpha_1}{\alpha_2} [/mm] * (p-1) * [mm] (\frac {1}{x_1} dx_1 [/mm] - [mm] \frac {1}{x_2} dx_2) [/mm] $

Aber wenn ich nun Zähler durch Nenner teile, dann kommt nicht [mm] $\sigma= \frac{1}{1-p}$ [/mm] raus was aber sicher rauskommen muss.

Wo ist mein Fehler?

        
Bezug
Totale Differentiale berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:16 Do 23.02.2012
Autor: MathePower

Hallo sveny_boi,

> Gegeben sei die Funktion [mm]f(x_1,x_2) = ( \alpha_1 x_1^p + \alpha_2 x_2^p)^{1/p}[/mm].
>  
> Berechne nun [mm]$\sigma_{1,2}[/mm] = [mm]\frac{d ln (\frac{x_2}{x_1})}{d ln ( \frac {f_1(x_1,x_2)}{f_2(x_1,x_2)})}[/mm]
>  
> Ich habe das ganze mal seperat betrachtet.
>  Der Zähler ist doch folgendes:
>  
> [mm]d ln (\frac {x_2}{x_1}) = dln x_2 - dln x_1 = \frac {1}{x_2} dx_2 - \frac {1}{x_1} dx_1[/mm]
>  
> Stimmt das soweit?
>  


Ja.


> Und der Nenner ist doch aus meiner Sicht:
>  
> [mm]d ln ( \frac {f_1(x_1,x_2)}{f_2(x_1,x_2)}) =d ln ( \frac {\alpha_1 * p * x_1^{p-1}}{\alpha_2 * p * x_2^\{p-1}}) = \frac{\alpha_1}{\alpha_2} * (p-1) * d ln (\frac {x_1}{x_2}) =\frac{\alpha_1}{\alpha_2} * (p-1) * (\frac {1}{x_1} dx_1 - \frac {1}{x_2} dx_2)[/mm]
>  
> Aber wenn ich nun Zähler durch Nenner teile, dann kommt
> nicht [mm]\sigma= \frac{1}{1-p}[/mm] raus was aber sicher rauskommen
> muss.
>  
> Wo ist mein Fehler?


Das können wir Dir erst feststellen,
wenn Du uns verrätst. was der Index an f bedeutet.

Lautet die Funktion vielleicht so:

[mm]f_\blue{p}(x_1,x_2) = ( \alpha_1 x_1^\blue{p} + \alpha_2 x_2^\blue{p})^{1/\blue{p}}[/mm].


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]