www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Terme der Entwicklung
Terme der Entwicklung < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Terme der Entwicklung: Wie geht das?
Status: (Frage) beantwortet Status 
Datum: 03:40 Sa 12.02.2011
Autor: Ragnaroek

Aufgabe
1. Berechnen Sie den fünften Term der Entwicklung
[mm] (\bruch{2}{3}*x^\bruch{1}{2}-\bruch{1}{2x})^6 [/mm]
2. Berechnen Sie den zehnten Term der Entwicklung
[mm] (\bruch{27a^2}{b^3}+\bruch{b^2}{6a^4})^{12} [/mm]

Hallo,

meine Frage ist schlicht - wie geht das?
Ich dachte zuerst, okay - fünfter Term der entwicklung - setze für x halt 5 ein und rechnest das aus...
Was passiert, nächste Aufgabe gleichen Typs und zack, mist.. da steht a und b. Jetzt hab ich mein Mathebuch hier durchgekrault - nix, ich weiß nichtmal wo ich genau ansetzen soll, weil Terme gibts ja überall, dieses Mathewort für so vieles.. Hat jemand ne Idee? ...^^


Grüße
Ragna

        
Bezug
Terme der Entwicklung: binomischer Lehrsatz
Status: (Antwort) fertig Status 
Datum: 04:15 Sa 12.02.2011
Autor: Loddar

Hallo Ragna!


Verwende den []binomischen Lehrsatz.


Gruß
Loddar


Bezug
                
Bezug
Terme der Entwicklung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:41 Sa 12.02.2011
Autor: Ragnaroek

Guten Tag.

Okay, also das sieht doch schon mal sehr gut aus.
Nun verstehe ich nur noch nicht so genau was es mit dem sog. Entwicklungskoeffizienten auf sich hat. Bilden, klar - kein Problem, aber check nicht so ganz wie jetzt hier zum Beispiel:
[]http://de.wikipedia.org/wiki/Binomischer_Lehrsatz (Beispiel 1 unten)
das angewendet wird.

[mm] \vektor{3 \\ 0} [/mm] wird 1
[mm] \vektor{3 \\ 1} [/mm] wird 3
[mm] \vektor{3 \\ 2} [/mm] wird auch 3..?
[mm] \vektor{3 \\ 3} [/mm] wird 1

wie darf ich das nun verstehen?

Bezug
                        
Bezug
Terme der Entwicklung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:04 Sa 12.02.2011
Autor: MathePower

Hallo Ragnaroek,

> Guten Tag.
>  
> Okay, also das sieht doch schon mal sehr gut aus.
> Nun verstehe ich nur noch nicht so genau was es mit dem
> sog. Entwicklungskoeffizienten auf sich hat. Bilden, klar -
> kein Problem, aber check nicht so ganz wie jetzt hier zum
> Beispiel:
>  
> []http://de.wikipedia.org/wiki/Binomischer_Lehrsatz
> (Beispiel 1 unten)
>  das angewendet wird.
>  
> [mm]\vektor{3 \\ 0}[/mm] wird 1
>  [mm]\vektor{3 \\ 1}[/mm] wird 3
>  [mm]\vektor{3 \\ 2}[/mm] wird auch 3..?
>  [mm]\vektor{3 \\ 3}[/mm] wird 1
>  
> wie darf ich das nun verstehen?


In diesem Artikel steht's.


Gruss
MathePower

Bezug
                
Bezug
Terme der Entwicklung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:44 Sa 12.02.2011
Autor: Ragnaroek

Guten Tag.

Okay, also das sieht doch schon mal sehr gut aus.
Nun verstehe ich nur noch nicht so genau was es mit dem sog. Entwicklungskoeffizienten auf sich hat. Bilden, klar - kein Problem, aber check nicht so ganz wie jetzt hier zum Beispiel:
*moment, link war fehlerhaft
[mm] (x+y)^3 [/mm]
das angewendet wird.

[mm] \vektor{3 \\ 0} [/mm] wird 1
[mm] \vektor{3 \\ 1} [/mm] wird 3
[mm] \vektor{3 \\ 2} [/mm] wird auch 3..?
[mm] \vektor{3 \\ 3} [/mm] wird 1

wie darf ich das nun verstehen?

Bezug
                        
Bezug
Terme der Entwicklung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:00 Sa 12.02.2011
Autor: MathePower

Hallo Ragnaroek,

> Guten Tag.
>  
> Okay, also das sieht doch schon mal sehr gut aus.
> Nun verstehe ich nur noch nicht so genau was es mit dem
> sog. Entwicklungskoeffizienten auf sich hat. Bilden, klar -
> kein Problem, aber check nicht so ganz wie jetzt hier zum
> Beispiel:
>  *moment, link war fehlerhaft
>  [mm](x+y)^3[/mm]
>  das angewendet wird.
>  
> [mm]\vektor{3 \\ 0}[/mm] wird 1
>  [mm]\vektor{3 \\ 1}[/mm] wird 3
>  [mm]\vektor{3 \\ 2}[/mm] wird auch 3..?


Ja, da die Binomialkoeffizienten symmetrisch sind:

[mm]\pmat{3 \\ k }=\bruch{3!}{k!*\left(3-k\right)!})=\bruch{3!}{\left(3-k\right)!}*k!)=\pmat{3 \\ 3-k }, \ k=0,1,2,3[/mm]


>  [mm]\vektor{3 \\ 3}[/mm] wird 1
>  
> wie darf ich das nun verstehen?


[mm]\pmat{3 \\ k}[/mm] ist der Koeffizient vor [mm]x^{k}*y^{3-k}[/mm]


Gruss
MathePower

Bezug
                                
Bezug
Terme der Entwicklung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:12 Sa 12.02.2011
Autor: Ragnaroek

Ahh..

Nu hab ich es..

Kein Wunder, dass ich nicht drauf gekommen bin wie sowas zu lösen ist.

Danke Dir

Gruß Ragna

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]