Teilmg der nat.Zahlen: Minimum < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:31 Fr 06.09.2013 | Autor: | jhx |
Hallo. Ich bin gerade über einen Beweis gestolpert und habe ihn ein wenig umformuliert. Die frage ist, ob meine argumentation richtig ist:
Behauptung: Jede nichtleere Teilmenge der natürlichen Zahlen besizt ein kleinstes Element.
Beweis: Sei [mm] $M\subset\mathbb{N}$ [/mm] mit [mm] $M\neq\emptyset$. [/mm] Angenommen, $M$ hat kein kleinstes Element. Setze [mm] $B=\{x\in\mathbb{N}; x\le y \forall y\in M\}$ [/mm] die Menge der unteren Schranken von $M$.
Aus der Annahme, dass $M$ kein kleinstes Element hat, folgt [mm] $B=\mathbb{N}$ [/mm] und somit ist [mm] $M=\emptyset$ [/mm] (im Widerspruch zur Vaoraussetzung), was mit Induktion funktioniert:
[mm] $1\in [/mm] B$ folgt aus der Definition von $B$.
Sei [mm] $n\in\mathbb{N}$ [/mm] und [mm] $n\in [/mm] B$.
[mm] $n+1\in [/mm] B$ muss gelten, da sonst: [mm] $\exists x\in M:x
Ist das so richtig?
lg
J
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:04 Fr 06.09.2013 | Autor: | Marcel |
Hallo,
> Hallo. Ich bin gerade über einen Beweis gestolpert und
> habe ihn ein wenig umformuliert. Die frage ist, ob meine
> argumentation richtig ist:
>
> Behauptung: Jede nichtleere Teilmenge der natürlichen
> Zahlen besizt ein kleinstes Element.
die Frage hier ist eigentlich schon: Welche Definition der natürlichen Zahlen
benutzt ihr und welche Eigenschaften sind bekannt?
> Beweis: Sei [mm]M\subset\mathbb{N}[/mm] mit [mm]M\neq\emptyset[/mm].
> Angenommen, [mm]M[/mm] hat kein kleinstes Element. Setze
> [mm]B=\{x\in\mathbb{N}; x\le y \forall y\in M\}[/mm] die Menge der
> unteren Schranken von [mm]M[/mm].
>
> Aus der Annahme, dass [mm]M[/mm] kein kleinstes Element hat, folgt
> [mm]B=\mathbb{N}[/mm]
Warum folgt das?
> und somit ist [mm]M=\emptyset[/mm] (im Widerspruch zur
> Vaoraussetzung), was mit Induktion funktioniert:
Achso, jetzt beweist Du das, was Du oben behauptet hast? Ist etwas
unglücklich sortiert!
> [mm]1\in B[/mm] folgt aus der Definition von [mm]B[/mm].
Und wohl auch aus der Definition von [mm] $\IN$ [/mm] - denn Du musst dann ja wissen,
dass [mm] $1\,$ [/mm] eine untere Schranke von [mm] $\IN$ [/mm] ist.
> Sei [mm]n\in\mathbb{N}[/mm] und [mm]n\in B[/mm].
> [mm]n+1\in B[/mm] muss gelten, da
> sonst: [mm]\exists x\in M:x
> [mm]x=n[/mm] und damit wäre n kleinstes Element, im Widerspruch zur
> Annahme, dass M kein kleinstes Element besitzt.
Hier benutzt Du, dass es zwischen zwei (echt) aufeinanderfolgenden natürlichen
Zahlen keine weitere gibt.
> Ist das so richtig?
Ich sehe jetzt erstmal keinen groben Fehler. Du kannst es etwas schöner
aufschreiben:
Angenommen, es gäbe eine Teilmenge [mm] $\varnothing \not=M \subseteq \IN$ [/mm] ohne ein
kleinstes Element. Sei [mm] $B\,$ [/mm] wie bei Dir.
Weil [mm] $1\,$ [/mm] eine untere Schranke für [mm] $\IN$ [/mm] ist, ist $1 [mm] \in [/mm] B$ wegen [mm] $\varnothing \not= [/mm] M [mm] \subseteq \IN.$ [/mm] (Klar?
Warum gilt das eigentlich?) Insbesondere ist $B [mm] \not=\varnothing.$
[/mm]
Der Rest geht dann wie oben, wobei Du, wie gesagt, benutzt, dass es
zwischen zwei echt aufeinanderfolgenden natürlichen Zahlen keine
weitere natürliche Zahl geben kann.
Dann folgt am Ende halt [mm] $B=\IN,$ [/mm] was zum Widerspruch [mm] $M=\varnothing$ [/mm] führt. Also
muss die Annahme verworfen werden.
--
--
Ich kenne den Beweis übrigens so, dass man ihn etwa mithilfe der reellen
Zahlen führt:
Sei [mm] $\varnothing \not=M \subseteq \IN.$ [/mm] Dann ist [mm] $M\,$ [/mm] (durch [mm] $1\,$) [/mm] nach unten beschränkt,
zudem gilt wegen [mm] $\IN \subseteq \IR$ [/mm] insbesondere $M [mm] \subseteq \IR.$ [/mm] Also besitzt
[mm] $M\,$ [/mm] nach dem Vollständigkeitsaxiom (oder Schnittaxiom) ein Infimum in [mm] $\IR,$ [/mm] nennen
wir es [mm] $I\,;$ [/mm] insbesondere ist $I [mm] \in \IR.$ [/mm] Sei also [mm] $I:=\inf(M) \in \IR\,.$
[/mm]
Nach Definition des Infimums gibt es dann insbesondere zu [mm] $\epsilon:=1/2 [/mm] > 0$ ein
[mm] $m_0 \in [/mm] M$ mit
(*) [mm] $m_0-I [/mm] < [mm] \epsilon=1/2.$
[/mm]
Nach Definition von [mm] $I\,$ [/mm] gilt aber auch $I [mm] \le [/mm] m$ für alle $m [mm] \in M\,,$ [/mm] insbesondere
also
(**) $I [mm] \le m_0\,.$ [/mm]
Wegen (*) folgt aber $I > [mm] m_0-1/2,$ [/mm] so dass $I [mm] \ge m_0$ [/mm] (wegen [mm] $m_0 \in \IN$) [/mm] gelten muss,
also
[mm] $m_0 \le [/mm] I.$
Daraus folgt $I [mm] \le m_0 \le [/mm] I,$ also [mm] $I=m_0 \in M\,.$ [/mm] Damit ist [mm] $I=\inf(M)=\min(M)$ ($=m_0$).
[/mm]
Gruß,
Marcel
|
|
|
|