www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Teilbarkeit durch 11
Teilbarkeit durch 11 < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Teilbarkeit durch 11: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:54 So 25.11.2012
Autor: Zero_112

Aufgabe
Zeigen Sie, dass für alle [mm] b\in\IR [/mm] die Division eines [mm] a(t)\in\IR[/mm] [t] durch das Binom t - b den Rest a(b) hat. Kann man daraus ein Kriterium für die Teilbarkeit einer natürlichen Zahl durch 11 herleiten?

Gezeigt, dass es den Rest a(b) hat, hab ich schon, aber dieses Kriterium bereitet mir noch Schwierigkeiten. Es müsste ja gelten, dass t-b =11 ist, das Polynom muss bei einem Wert t eine natürliche Zahl ergeben und die Division darf kein Rest haben, oder?

Also:  a(t) : 11 = x + 0  

Das sind leider meine einzigen Ansätze, mit denen ich aber nicht ganz zum Ziel komme...

        
Bezug
Teilbarkeit durch 11: Antwort
Status: (Antwort) fertig Status 
Datum: 22:15 So 25.11.2012
Autor: felixf

Moin!

> Zeigen Sie, dass für alle [mm]b\in\IR[/mm] die Division eines
> [mm]a(t)\in\IR[/mm] [t]durch das Binom t - b den Rest a(b) hat. Kann man daraus ein Kriterium für die Teilbarkeit einer natürlichen Zahl durch 11 herleiten?
>
>  Gezeigt, dass es den Rest a(b) hat, hab ich schon, aber dieses Kriterium bereitet mir noch Schwierigkeiten. Es müsste ja gelten, dass t-b =11 ist, das Polynom muss bei einem Wert t eine natürliche Zahl ergeben und die Division darf kein Rest haben, oder?
>  
> Also:  a(t) : 11 = x + 0  
>
> Das sind leider meine einzigen Ansätze, mit denen ich aber nicht ganz zum Ziel komme...

Sei $N$ die gegebene Zahl. Schreibe $N = [mm] \sum_{i=0}^n a_i 10^i$ [/mm] mit [mm] $a_i \in \{ 0, \dots, 9 \}$; [/mm] dann sind [mm] $a_i$ [/mm] die Dezimalziffern von $N$. Weiterhin ist $11 = 10 - (-1)$.

Wenn du jetzt das Polynom $f = [mm] \sum_{i=0}^n a_i X^i$ [/mm] und $g = X - (-1)$ anschaust, dann ist $f$ modulo $g$ ja gleich $f(-1) = [mm] \sum_{i=0}^n a_i (-1)^i$. [/mm] Jetzt musst du dir genauer anschauen, wie du $f(-1)$ als Rest von $f$ bei Division durch $g$ darstellen kannst. Das liefert dir einen Bezug zwischen der Teilbarkeit von $N = f(10)$ und der von $f(-1)$ durch $11 = g(10)$.

LG Felix


Bezug
        
Bezug
Teilbarkeit durch 11: Antwort
Status: (Antwort) fertig Status 
Datum: 22:58 So 25.11.2012
Autor: HJKweseleit

Betrachte zu einer beliebigen natürlichen Zahl N mit den Ziffern [mm] Z_n,Z_{n-1},Z_{n-2},...,Z_1,Z_0 [/mm] das Polynom

[mm] f(t)=Z_n*t^n+Z_{n-1}*t^{n-1}+Z_{n-2}*n^{t-2}+...+Z_1*+Z_0. [/mm]

Du siehst sofort, dass N=f(10) ist, was aber erst später relevant wird.

Zu irgendeiner anderen natürlichen Zahl k kannst du nach dem Euklidschen Algorithmus das Polynom durch (t-k) dividieren, wobei du einen ganze Zahl [mm] 0\le [/mm] R < k als Rest erhältst:

f(t) = (t-k)*g(t)+R.

Wegen f(k)=(k-k)g(k)+R muss R=f(k) sein.

Wichtig: Da die [mm] Z_i [/mm] und k nur natürliche Zahlen sind, folgt aus der Durchführung des Euklidschen Algorithmus, dass auch g nur ganze Zahlen als Koeffizienten hat und ebenso R ganzzahlig sein muss (letzteres aber auch schon wegen R=f(k)). Grundsätzlich ist das für den Euklidschen Algorithmus nicht selbstverständlich.

Nun gilt: N=f(10)=(10-k)*g(10)+f(k), wobei g(10) eine ganze Zahl ist. Daran liest man nun ab:

N=f(10) ist genau dann durch (10-k) teilbar, wenn f(k) durch 11 teilbar ist.

Setze nun k=-1. Die Regel lautet damit: Eine Zahl ist genau dann durch 11 teilbar, wenn ihre alternierende Quersumme (Vorzeichen immer auf + und - wechseln) 0 oder ein Vielfaches von 11 ergibt.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]