www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Taylor
Taylor < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylor: Aufgabe mit Taylor-Entwicklung
Status: (Frage) beantwortet Status 
Datum: 20:10 Do 12.04.2007
Autor: barsch

Aufgabe
Eine Funktion f sei auf [mm] (0,\infty) [/mm] dreimal differenzierbar und es gelte [mm] \limes_{x\rightarrow\infty} [/mm] f(x)=a und [mm] \limes_{x\rightarrow\infty} [/mm] f'''(x)=0. Es ist zu zeigen, dass auch [mm] \limes_{x\rightarrow\infty} [/mm] f''(x)=0 und [mm] \limes_{x\rightarrow\infty} [/mm] f'(x)=0.

Hi,

ich habe hier die Lösung vorliegen, kann aber relativ wenig damit anfangen, vielleicht kann mir jemand helfen.

Sei x>1. Da Taylorformel, [mm] \exists \varepsilon_{1}\in(x,x+1), \varepsilon_{2}\in(x-1,x). [/mm]

1. Frage: [mm] \varepsilon [/mm] ist doch immer [mm] \in [/mm] (x,a) , wobei a der Entwicklungspunkt ist. Wie kommt man auf [mm] \exists \varepsilon_{1}\in(x,x+1), \varepsilon_{2}\in(x-1,x)??? [/mm]

Weiter: [mm] f(x+1)=f(x)+f'(x)+\bruch{f''(x)}{2}+\bruch{f'''(\varepsilon_{1})}{6} [/mm]
und [mm] f(x-1)=f(x)-f'(x)+\bruch{f''(x)}{2}-\bruch{f'''(\varepsilon)_{2}}{6} [/mm]

2.Frage: Wo ist der Entwicklungspunkt geblieben? Wie kommen die Vorzeichen (vor allem beim 2.) zustande?

Jetzt werden beide addiert, also f(x-1)+f(x+1) und nach f'(x) und f''(x) umgestellt, weil man ja zeigen will, dass [mm] \limes_{x\rightarrow\infty} [/mm] f'(x)=0 bzw.  [mm] \limes_{x\rightarrow\infty} [/mm] f''(x)=0.

[mm] f''(x)=f(x+1)+f(x-1)-2f(x)-\bruch{1}{6}(f'''(\varepsilon_{1})-f'''(\varepsilon_{2}) [/mm]
und

[mm] 2f'(x)=f(x+1)-f(x-1)-\bruch{1}{6}(f'''(\varepsilon_{1})+f'''(\varepsilon_{2})) [/mm]

und daraus wird gefolgert: [mm] \limes_{x\rightarrow\infty} [/mm] f'(x)=0 und
[mm] \limes_{x\rightarrow\infty} [/mm] f''(x)=0.

Warum? Warum diese Vorgehensweise? Wäre toll, wenn mir jemand weiterhelfen kann!

Danke

MfG

        
Bezug
Taylor: Antwort
Status: (Antwort) fertig Status 
Datum: 20:53 Do 12.04.2007
Autor: leduart

hallo barsch
> Eine Funktion f sei auf [mm](0,\infty)[/mm] dreimal differenzierbar
> und es gelte [mm]\limes_{x\rightarrow\infty}[/mm] f(x)=a und
> [mm]\limes_{x\rightarrow\infty}[/mm] f'''(x)=0. Es ist zu zeigen,
> dass auch [mm]\limes_{x\rightarrow\infty}[/mm] f''(x)=0 und
> [mm]\limes_{x\rightarrow\infty}[/mm] f'(x)=0.
>  Hi,
>  
> ich habe hier die Lösung vorliegen, kann aber relativ wenig
> damit anfangen, vielleicht kann mir jemand helfen.
>  
> Sei x>1. Da Taylorformel, [mm]\exists \varepsilon_{1}\in(x,x+1), \varepsilon_{2}\in(x-1,x).[/mm]
>  
> 1. Frage: [mm]\varepsilon[/mm] ist doch immer [mm]\in[/mm] (x,a) , wobei a
> der Entwicklungspunkt ist. Wie kommt man auf [mm]\exists \varepsilon_{1}\in(x,x+1), \varepsilon_{2}\in(x-1,x)???[/mm]

[mm] \varepsilon [/mm] liegt immer im Intervall zwischen Entwicklungspkt und Punkt, also zwischen [mm] x_0 [/mm] und x, was dein a ist weiss ich nicht.
Entwicklungspkt hier s.u.

> Weiter:
> [mm]f(x+1)=f(x)+f'(x)+\bruch{f''(x)}{2}+\bruch{f'''(\varepsilon_{1})}{6}[/mm]
>  und
> [mm]f(x-1)=f(x)-f'(x)+\bruch{f''(x)}{2}-\bruch{f'''(\varepsilon)_{2}}{6}[/mm]
>  
> 2.Frage: Wo ist der Entwicklungspunkt geblieben? Wie kommen
> die Vorzeichen (vor allem beim 2.) zustande?

Der Entwicklungspkt ist x, wenn du statt x ueberall [mm] x_0 [/mm] schreibst, siehst du vielleicht klarer. Wert bei [mm] x_0+1 [/mm] und [mm] x_0-1 [/mm] so dass du Potenzen von [mm] (x_0+1-x_0)=1 [/mm] und von [mm] (x_0 -1-x_0=(-1) [/mm] hast. daher die Vorzeichen!

> Jetzt werden beide addiert, also f(x-1)+f(x+1) und nach
> f'(x) und f''(x) umgestellt, weil man ja zeigen will, dass
> [mm]\limes_{x\rightarrow\infty}[/mm] f'(x)=0 bzw.  
> [mm]\limes_{x\rightarrow\infty}[/mm] f''(x)=0.
>  
> [mm]f''(x)=f(x+1)+f(x-1)-2f(x)-\bruch{1}{6}(f'''(\varepsilon_{1})-f'''(\varepsilon_{2})[/mm]
> und
>  
> [mm]2f'(x)=f(x+1)-f(x-1)-\bruch{1}{6}(f'''(\varepsilon_{1})+f'''(\varepsilon_{2}))[/mm]
>  
> und daraus wird gefolgert: [mm]\limes_{x\rightarrow\infty}[/mm]
> f'(x)=0 und
>  [mm]\limes_{x\rightarrow\infty}[/mm] f''(x)=0.

[mm]\limes_{x\rightarrow\infty}f(x+1)=\limes_{x\rightarrow\infty}f(x-1)=\limes_{x\rightarrow\infty}f(x)=0[/mm]
ebenso die f''' gegen 0.
Gruss leduart

Bezug
                
Bezug
Taylor: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 23:15 Do 12.04.2007
Autor: barsch

Hi leduart,

danke für die schnelle und gute Antwort. Habe es jetzt nachvollziehen können.

Eine Frage habe ich jedoch noch:

>[mm]\limes_{x\rightarrow\infty}f(x+1)=\limes_{x\rightarrow\infty}f(x-1)=\limes_{x\rightarrow\infty}f(x)=0[/mm]

>  ebenso die f''' gegen 0.

Es ist aber:
[mm] \limes_{x\rightarrow\infty}f(x)=a [/mm] folgt daraus:

[mm]\limes_{x\rightarrow\infty}f(x+1)=\limes_{x\rightarrow\infty}f(x-1)=\limes_{x\rightarrow\infty}f(x)=a[/mm] ?

Soweit ich das verstanden habe, müsste das rauskommen.

MfG

Bezug
                        
Bezug
Taylor: Antwort
Status: (Antwort) fertig Status 
Datum: 02:42 Fr 13.04.2007
Autor: leduart

Hallo barsch
Du hast natuerlich recht, beides geht gegen a, die differenz dann gegen 0
es gilt allgemein fuer
[mm] \limes_{x\rightarrow\infty}f(x+a)=\limes_{x\rightarrow\infty}f(x-a)=\limes_{x\rightarrow\infty}f(x) [/mm]
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]