Taylor-Formel < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | (a) Es sei [mm] $U\in\IR^n$ [/mm] offen und [mm] $x\in [/mm] U$. Es sei [mm] $f:U\to\IR$ [/mm] eine zweimal partiell differenzierbare Funktion. Zeigen Sie, dass
[mm] q_2(\xi)=\bruch{1}{2}\summe_{i=1}^{n}\summe_{j=1}^{n}\bruch{\partial^2}{\partial_{x_i}\partial_{x_j}}f(x)*\xi_i\xi_j
[/mm]
(b) Wir können nun [mm] p_2(\xi)=q_0(\xi) [/mm] + [mm] q_1(\xi) [/mm] + [mm] q_2(\xi) [/mm] als Funktion [mm] U\to\IR [/mm] auffassen. Zeigen Sie, dass für alle [mm] i,j\in\{1,...,n\} [/mm] gilt:
[mm] \bruch{\partial^2}{\partial_{x_i}\partial_{x_j}}f(x)=\bruch{\partial^2}{\partial_{x_i}\partial_{x_j}}p_2(0)
[/mm]
Hinweis: Es ist hilfreich die Notation [mm] p_2(x_1,...,x_n) [/mm] anstatt [mm] p_2(\xi_1,...,\xi_n) [/mm] zu verwenden. Unterscheiden Sie zudem die Fälle i=j und [mm] i\not=j [/mm] |
Hallo liebe Gemeinde,
bei der 1. Teilaufgabe bin ich mir recht sicher, dass ich sie richtig gemacht habe und führe diese deshalb nicht auf. Bei der 2. Teilaufgabe habe ich garantiert einen Denkfehler. Ich hoffe ihr könnt mir dabei helfen den Knoten in meinem Kopf lösen :)
Aus der Vorlesung wissen wir, dass:
[mm] q_0(\xi)=f(x)
[/mm]
[mm] q_1(\xi)=\summe_{i=1}^{n}\bruch{\partial}{\partial_{x_i}}f(x)*\xi_i
[/mm]
[mm] q_2(\xi)=\bruch{1}{2}\summe_{i=1}^{n}\summe_{j=1}^{n}\bruch{\partial^2}{\partial_{x_i}\partial_{x_j}}f(x)*\xi_i\xi_j
[/mm]
Demnach ist doch [mm] p_2(0)=f(x), [/mm] weil [mm] q_1(0)=q_2(0)=0 [/mm] und [mm] q_0(0)=f(x) [/mm] sind ... Dann wäre man doch eigentlich direkt am Ziel?!
Mit dem Hinweis kann ich ehrlich gesagt nicht so viel anfangen ... Ich hoffe ihr könnt mir dabei helfen diese Aufgabe zu lösen bzw. mein Verständnisproblem zu beheben.
Lieben Dank und beste Grüße,
Alex
P.S.: Die Definition der Taylor-Formel ist ähnlich der Definition aus dem Forster Analysis 2. Leider hat der Dozent vergessen die Herkunft von [mm] \xi [/mm] zu erwähnen ...
|
|
|
|
Hallo Matheraum,
ich wollte euch nur einmal kurz meine Lösung zu der ersten Teilaufgabe zeigen, um zu erfragen, ob diese richtig ist. Also:
Wir hatten [mm] $q_m(\xi):=\summe_{|\alpha|=m}\bruch{D^{\alpha}f(x)}{\alpha!}\xi^{\alpha}$
[/mm]
Wir betrachten also den Fall m=2:
Die einzigen Vektoren [mm] $\alpha\in\IN$ [/mm] mit [mm] $|\alpha|=2$, [/mm] sind für i<j die Vektoren:
[mm] \alpha=e_i+e_j [/mm] mit [mm] 1\le [/mm] i<j [mm] \le [/mm] n und für i=j die Vektoren:
[mm] \alpha=2e_i
[/mm]
Somit ist:
[mm] q_2(\xi)=\summe_{i=1}^n\bruch{D^{2e_i}f(x)}{2e_i!}\xi^{2e_i} [/mm] + [mm] \summe_{i=1}^{j-1}\summe_{j=i+1}^{n}\bruch{D^{e_i+e_j}f(x)}{(e_i+e_j)!}\xi^{e_i+e_j}
[/mm]
[mm] =\bruch{1}{2}\summe_{i=1}^n\bruch{\partial^2f}{\partial x_i^2}(x)\cdot\xi_i^2 [/mm] + [mm] \summe_{i=1}^{j-1}\summe_{j=i+1}^{n}\bruch{\partial^2f}{\partial x_i\partial x_j}(x)\cdot\xi_i\xi_j
[/mm]
[mm] =\bruch{1}{2}\summe_{\substack{i=1 \\ i=j}}^n\summe_{\substack{j=1 \\ j=i}}^n\bruch{\partial^2f}{\partial x_i\partial x_j}(x)\cdot\xi_i\xi_j [/mm] + [mm] \bruch{1}{2}\summe_{\substack{i=1 \\ i\not= j}}^n\summe_{\substack{j=1 \\ j\not=i}}^n\bruch{\partial^2f}{\partial x_i\partial x_j}(x)\cdot\xi_i\xi_j
[/mm]
[mm] =\bruch{1}{2}\summe_{i=1}^{n}\summe_{j=1}^{n}\bruch{\partial^2}{\partial x_i\partial x_j}f(x)\cdot\xi_i\xi_j
[/mm]
Habe mir bei der einen Summe gedacht, dass aufgrund der Tatsache, dass [mm] f:U\to\IR [/mm] zweimal partiell stetig differenzierbar ist gelten muss:
[mm] \summe_{i=1}^{j-1}\summe_{j=i+1}^{n}\bruch{\partial^2f}{\partial x_i\partial x_j}(x)\cdot\xi_i\xi_j [/mm] = [mm] \summe_{j=1}^{i-1}\summe_{i=j+1}^{n}\bruch{\partial^2f}{\partial x_i\partial x_j}(x)\cdot\xi_i\xi_j [/mm] = [mm] \bruch{1}{2}\summe_{\substack{i=1 \\ i\not= j}}^n\summe_{\substack{j=1 \\ j\not=i}}^n\bruch{\partial^2f}{\partial x_i\partial x_j}(x)\cdot\xi_i\xi_j
[/mm]
Ist das richtig???
Zum Aufgabenteil (b) bräuchte ich leider immer noch Hilfe, siehe den Beitrag von oben ... Da habe ich scheinbar irgendeinen Denkknoten, der sich nicht lockern möchte :)
Viele Grüße,
Alex
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 01:20 Fr 10.06.2011 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 04:24 Mi 08.06.2011 | Autor: | Quadratur |
Ich glaube ich habe meinen Denkfehler in der 2. Teilaufgabe beseitigen können. Man musste das Polynom anders aufschreiben und dann einfach nur die partiellen Ableitungen für die Fälle i=j und [mm] i\not=j [/mm] ausrechnen und siehe da, dann kommt tatsächlich das richtige Ergebnis zum Vorschein :)
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 04:20 Do 09.06.2011 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|