www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Navigation
 Startseite...
 Suchen
 Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Tangentialraum berechnen
Tangentialraum berechnen < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangentialraum berechnen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 19:11 Mi 28.04.2021
Autor: Flowbro

Aufgabe
Es seien n, k [mm] \in [/mm] N  mit k < n, U Teilmenge [mm] R^k [/mm] offen und g = [mm] (g_{k+1}, [/mm] ..., [mm] g_n) [/mm] : U --> [mm] R^{n-k} [/mm] m-mal stetig differenzierbar. Zudem sei M := graph(g) = {x ∈ U x [mm] R^{n-k}: x_l [/mm] = [mm] g_l(x_1, [/mm] ..., [mm] x_k) [/mm] (k + 1 ≤ l ≤ n)} eine k-dimensionale [mm] $C^m$-Untermannigfaltigkeit [/mm] von [mm] R^n [/mm]
Zeigen Sie, dass [mm] T_{p}M= graph(dg(p_1, [/mm] ..., [mm] p_k)) [/mm] für alle p [mm] \in [/mm] M gilt.


Hallo an alle

bei der Aufgabe hat man für den Nachweis des Tangentialraums ja alle Voraussetzungen eigentlich schon gegegen. Lediglich nachrechnen muss man, dass rang$dg(g(p))=n-k$ gilt, wobei g an sich ja schon aus nur n-k Elementen besteht. Dann muss man im Folgenden nur zeigen:

[mm] $T_{p}M=ker(dg(p))$, [/mm] also [mm] $ker(dg(p))=graph(dg(p_1, [/mm] ..., [mm] p_k))$, [/mm] wobei die [mm] dim$T_{p}M=k$ [/mm] ist für [mm] $p\in [/mm] M$

Liege ich damit soweit bereits richtig?

Mein Problem besteht hierbei vor allem in der Schreibweise [mm] $T_{p}M= graph(dg(p_1, [/mm] ..., [mm] p_k))$, [/mm] wobei ich hier nicht weiß, wie ich beim Nachrechnen mit der Bezeichnung des graph umgehen soll?


        
Bezug
Tangentialraum berechnen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 So 02.05.2021
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]