www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Tangente am Einheitskreis
Tangente am Einheitskreis < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangente am Einheitskreis: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 12:07 Fr 21.03.2014
Autor: Gabbabin

Aufgabe
Wir betrachten die obere Hälfte des Einheitskreises H.
a) Gebe H als Graph einer Funktion f an.
b) Bestimme die Ableitung f´.
c) Zeige f¨ur jeden Punkt P ∈ H , dass die Gerade OP senkrecht steht
auf der Tangenten in P an H .

Ich habe a und b gelöst.

a)

[mm] 1^{2} [/mm] = [mm] x^{2} [/mm] + [mm] y^{2} [/mm] ⇒ y = [mm] \wurzel{x^{2}-1} [/mm]

f : [1, 1] → [0, 1]

x → f(x):= [mm] \wurzel{x^{2}-1} [/mm]

b)

f(x) = u(v(x)) mit

v(x) = [mm] x^{2} [/mm] - 1
u(x) [mm] =\bruch{1}{2} [/mm]
[mm] \wurzel{x} [/mm] = [mm] x^1/2 [/mm]
u´(x) [mm] =\bruch{1}{2}x^{-\bruch{1}{2}}=\bruch{1}{2}*\bruch{1}{\wurzel{x}} [/mm]

v´(x)=2x

f´(x) = v´(x)*u´(v(x))

[mm] =2x*\bruch{1}{2}(x^{2}-1)^-{\bruch{1}{2}}=2x*\bruch{1}{2}*\bruch{1}{\wurzel{x^{2}-1}} [/mm]
[mm] =\bruch{2x}{2*\wurzel{x^{2}-1}}=\bruch{x}{\wurzel{x^{2}-1}} [/mm]

c)

[mm] $P=(x,\sqrt{x^2-1})$ [/mm]
$y=mx+b$ [mm] \rightarrow \sqrt{x^2-1}= \frac{x}{\sqrt{x^2-1}}x+b [/mm]

[mm] \\\sqrt{x^2-1}-\frac{x^2}{\sqrt{x^2-1}}=b [/mm]

[mm] \\=$\frac{(\sqrt{x^2-1})^2-x^2}{\sqrt{x^2-1}}= \newline [/mm]
[mm] -\frac{1}{\sqrt{x^2-1}}$, [/mm] da

[mm] \\ \Rightarrow $(\sqrt{x^2-1})^2-x^2=-1$ [/mm]
[mm] \\ \Rightarrow $(\sqrt{x^2-1})^2=x^2-1 [/mm]
[mm] \\ \Rightarrow $x^2-1-x^2=-1 [/mm]
[mm] \\ $\Rightarrow \frac{x^2-1-x^2}{\sqrt{x^2-1}}$ [/mm] = [mm] $\frac{-1}{\sqrt{x^2-1}}$ [/mm]

[mm] $y=\frac{x}{\sqrt{x^2-1}}x+\frac{-1}{\sqrt{x^2-1}}$ [/mm]

Ist das soweit richtig?


        
Bezug
Tangente am Einheitskreis: Antwort
Status: (Antwort) fertig Status 
Datum: 12:27 Fr 21.03.2014
Autor: fred97


> Wir betrachten die obere Hälfte des Einheitskreises H.
>  a) Gebe H als Graph einer Funktion f an.
>  b) Bestimme die Ableitung f´.
>  c) Zeige f¨ur jeden Punkt P ∈ H , dass die Gerade OP
> senkrecht steht
>  auf der Tangenten in P an H .
>  Ich habe a und b gelöst.
>  
> a)
>  
> [mm]1^{2}[/mm] = [mm]x^{2}[/mm] + [mm]y^{2}[/mm] ⇒ y = [mm]\wurzel{x^{2}-1}[/mm]


Nein. Richtig: [mm] y=\wurzel{1-x^2} [/mm]

>  
> f : [1, 1] → [0, 1]
>  
> x → f(x):= [mm]\wurzel{x^{2}-1}[/mm]

S.0.


>  
> b)
>  
> f(x) = u(v(x)) mit
>  
> v(x) = [mm]x^{2}[/mm] - 1
>  u(x) [mm]=\bruch{1}{2}[/mm]
>  [mm]\wurzel{x}[/mm] = [mm]x^1/2[/mm]
>  u´(x)
> [mm]=\bruch{1}{2}x^{-\bruch{1}{2}}=\bruch{1}{2}*\bruch{1}{\wurzel{x}}[/mm]
>  
> v´(x)=2x
>  
> f´(x) = v´(x)*u´(v(x))
>  
> [mm]=2x*\bruch{1}{2}(x^{2}-1)^-{\bruch{1}{2}}=2x*\bruch{1}{2}*\bruch{1}{\wurzel{x^{2}-1}}[/mm]
>  
> [mm]=\bruch{2x}{2*\wurzel{x^{2}-1}}=\bruch{x}{\wurzel{x^{2}-1}}[/mm]


Da Dein f oben falsch war, ist auch Deine Ableitung falsch.


>  
> c)
>  
> [mm]P=(x,\sqrt{x^2-1})[/mm]
>  [mm]y=mx+b[/mm] [mm]\rightarrow \sqrt{x^2-1}= \frac{x}{\sqrt{x^2-1}}x+b[/mm]

Jetzt wirds chaotisch ! Die Gleichung der Tangente in P soll wohl

    y=mx+b

sein. Der Punkt P ist fest. Dann kannst Du für ihn nicht die Laufvariable in der Tangentengl. benutzen, also besser

    [mm] $P=(u,\sqrt{1-u^2})$ [/mm]

Dann ist m=f'(u).

Ist n die Steigung der Gerade OP, so musst Du nur zeigen:

    $n*f'(u)=-1$

FRED

>  
> [mm]\\\sqrt{x^2-1}-\frac{x^2}{\sqrt{x^2-1}}=b[/mm]
>  
> [mm]\\=$\frac{(\sqrt{x^2-1})^2-x^2}{\sqrt{x^2-1}}= \newline[/mm]
>  
> [mm]-\frac{1}{\sqrt{x^2-1}}$,[/mm] da
>  
> [mm]\\ \Rightarrow[/mm]  [mm](\sqrt{x^2-1})^2-x^2=-1[/mm]
>  [mm]\\ \Rightarrow $(\sqrt{x^2-1})^2=x^2-1[/mm]
>  [mm]\\ \Rightarrow $x^2-1-x^2=-1[/mm]
>  
> [mm]\\[/mm]  [mm]\Rightarrow \frac{x^2-1-x^2}{\sqrt{x^2-1}}[/mm] =
> [mm]\frac{-1}{\sqrt{x^2-1}}[/mm]
>
> [mm]y=\frac{x}{\sqrt{x^2-1}}x+\frac{-1}{\sqrt{x^2-1}}[/mm]
>  
> Ist das soweit richtig?
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]