System quadratischer Kongruenz < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:59 Mo 26.04.2010 | Autor: | kickerle |
Hallo,
ich lese gerade ein Buch über Zahlentheorie und wundere mich dabei über folgende Aussage:
Sind [mm]p_1,\dots,p_r[/mm] Primzahlen und ist [mm](x_1,\dots,x_r)\in \{\pm1\}^r[/mm] ein beliebiger r-dim Vektor bei dem sämtliche Komponenten entweder gleich 1 oder gleich -1 sind, dann existiert eine ganze Zahl n derart, dass
[mm]\left(\frac{n}{p_1}\right)=x_1, \dots, \left(\frac{n}{p_r}\right)=x_r[/mm] gilt.
Diese Aussage wird ohne jegliche Erläuterung in einer Fußnote angegeben. Wie kann man diese Aussage denn zeigen? Oder ist sie etwa offensichtlich?
Wäre für einen Tipp sehr dankbar.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:50 Mo 26.04.2010 | Autor: | statler |
Hi!
> ich lese gerade ein Buch über Zahlentheorie und wundere
> mich dabei über folgende Aussage:
> Sind [mm]p_1,\dots,p_r[/mm] Primzahlen und ist [mm](x_1,\dots,x_r)\in \{\pm1\}^r[/mm]
> ein beliebiger r-dim Vektor bei dem sämtliche Komponenten
> entweder gleich 1 oder gleich -1 sind, dann existiert eine
> ganze Zahl n derart, dass
> [mm]\left(\frac{n}{p_1}\right)=x_1, \dots, \left(\frac{n}{p_r}\right)=x_r[/mm]
> gilt.
> Diese Aussage wird ohne jegliche Erläuterung in einer
> Fußnote angegeben. Wie kann man diese Aussage denn zeigen?
> Oder ist sie etwa offensichtlich?
Na, so ziemlich, je nach Know-how. Die Primzahlen müssen natürlich paarweise verschieden sein. Aber dann überleg dir das mal für den einfachsten Fall mit 2 ungeraden Primzahlen. Da gibt es genauso viele Reste wie Nichtreste, vor allen Dingen gibt es von jeder Sorte mindestens einen. Ist z. B. p die eine Primzahl, a [mm] \in [/mm] {-1, 1} die vorgegebene Vektorkomponente und x eine Zahl mit [mm] \left(\frac{x}{p}\right) [/mm] = a, dann erhalte ich als Bedingung an die gesuchte Zahl y y [mm] \equiv [/mm] x mod p.
Vielleicht siehst du jetzt, wie man weitermachen könnte und was letztlich zu lösen bleibt. Stichwort ist 'Chinesischer Restsatz'.
Gruß aus HH-Harburg
Dieter
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:48 Mo 26.04.2010 | Autor: | kickerle |
Vielen Dank. Jetzt ist es mir klar geworden. Wünsche noch einen schönen Abend.
|
|
|
|