www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Summe von Lebesgue-Zerlegungen
Summe von Lebesgue-Zerlegungen < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Summe von Lebesgue-Zerlegungen: Frage zu Aufgabe
Status: (Frage) überfällig Status 
Datum: 17:36 So 03.11.2013
Autor: Tipsi

Aufgabe
Hallo,
ich soll zeigen, dass, wenn
[mm] v_n [/mm] und [mm] v:=\sum_n v_n [/mm] endliche Maße auf dem endlichen Maßraum [mm] (\Omega, \sigma, \mu) [/mm] mit den Lebesgue-Zerlegungen [mm] v_c [/mm] << [mm] \mu, v_{n,c} [/mm] << [mm] \mu [/mm] sowie [mm] v_s [/mm] und [mm] v_{n,s} [/mm] singulär zu [mm] \mu, [/mm] gilt:
[mm] v_c=\sum_n v_{n,c} [/mm] und [mm] v_s [/mm] = [mm] \sum_n v_{n,s} [/mm] sowie [mm] \sum_n \frac{dv_{n,c}}{d\mu} [/mm] = [mm] \frac{dv_c}{d\mu}. [/mm]

Irgendwie schaut es offensichtlich aus, dass das gelten muss, aber beim Beweis komme ich irgendwie nicht weiter. Darum wäre es hilfreich, wenn ihr mir einen Tipp geben könntet, wie ich ihn am besten angehe.
Danke schon für eure Hilfe

        
Bezug
Summe von Lebesgue-Zerlegungen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Di 05.11.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]