www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Prozesse und Matrizen" - Stochastische Prozesse
Stochastische Prozesse < Prozesse+Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Prozesse und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stochastische Prozesse: Entwicklung
Status: (Frage) beantwortet Status 
Datum: 14:57 Fr 17.02.2012
Autor: blume1234

Aufgabe
Von einem Prozess ist das Zustandsdiagramm bekannt.
a) Bestimmen Sie die Übergangsmatrix.
b)Bestimmen Sie einen Fixvektor.
c)Bei diesem Prozess sind 100 Individuen vorhanden, die zu Beginn alle in A sind. Bestimmen Sie die langfristige Entwicklung.

Die Teilaufgaben a) und b) haben mir keine Probleme bereitet.
a) Übergangsmatrix=

[mm] P=\pmat{ 0,3 & 0,1 & 0,2 \\ 0,4 & 0,9 & 0,5 \\ 0,3 & 0 & 0,3 } [/mm]

b) Der Fixvektor ist:

[mm] \vec{g}= \bruch{1}{53} [/mm] * [mm] \pmat{ 7 \\ 43 \\ 3 } [/mm]

c) Dort liegt mein Problem, denn ich dachte das ich eine Grenzmatrix berechnen muss. Ich habe zuerst eine beliebige Verteilung gewählt nämlich [mm] \pmat{ 100 \\ 0 \\ 0 }. [/mm] Diesen Vektor habe ich mit der Übergangsmatrix P multipliziert. Dann habe ich, um eine Grenzmatrix zu bekommen P^200 gewählt. Und dann diese Grenzmatrix*meine beliebige Verteilung. Es kam dann der Vektor [mm] \pmat{ 19 \\ 63 \\ 18 } [/mm] heraus, aber es muss der Vektor [mm] \pmat{ 13,21 \\ 81,13 \\ 5,66 } [/mm] herauskommen. Wo liegt denn jetzt mein Fehler?
  

        
Bezug
Stochastische Prozesse: Antwort
Status: (Antwort) fertig Status 
Datum: 15:19 Fr 17.02.2012
Autor: Al-Chwarizmi


> Von einem Prozess ist das Zustandsdiagramm bekannt.
>  a) Bestimmen Sie die Übergangsmatrix.
>  b)Bestimmen Sie einen Fixvektor.
>  c)Bei diesem Prozess sind 100 Individuen vorhanden, die zu
> Beginn alle in A sind. Bestimmen Sie die langfristige
> Entwicklung.
>  Die Teilaufgaben a) und b) haben mir keine Probleme
> bereitet.
>  a) Übergangsmatrix=
>  
> [mm]P=\pmat{ 0,3 & 0,1 & 0,2 \\ 0,4 & 0,9 & 0,5 \\ 0,3 & 0 & 0,3 }[/mm]
>  
> b) Der Fixvektor ist:
>  
> [mm]\vec{g}= \bruch{1}{53}[/mm] * [mm]\pmat{ 7 \\ 43 \\ 3 }[/mm]
>  
> c) Dort liegt mein Problem, denn ich dachte das ich eine
> Grenzmatrix berechnen muss. Ich habe zuerst eine beliebige
> Verteilung gewählt nämlich [mm]\pmat{ 100 \\ 0 \\ 0 }.[/mm] Diesen
> Vektor habe ich mit der Übergangsmatrix P multipliziert.
> Dann habe ich, um eine Grenzmatrix zu bekommen P^200
> gewählt. Und dann diese Grenzmatrix*meine beliebige
> Verteilung. Es kam dann der Vektor [mm]\pmat{ 19 \\ 63 \\ 18 }[/mm]
> heraus, aber es muss der Vektor [mm]\pmat{ 13,21 \\ 81,13 \\ 5,66 }[/mm]
> herauskommen. Wo liegt denn jetzt mein Fehler?


Anstatt  [mm] P^{200} [/mm]  hast du offenbar nur  [mm] P^2 [/mm]  genommen !

LG    


Bezug
                
Bezug
Stochastische Prozesse: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:39 Fr 17.02.2012
Autor: blume1234

ahh okay dankeschön :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Prozesse und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]