Stationäres Strömungsfeld < Elektrotechnik < Ingenieurwiss. < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 10:43 Sa 04.06.2011 | Autor: | Marcel08 |
Aufgabe | Gegeben sei ein Widerstand in Form eines geraden Zylinders der Länge L, der einen Kreisringsektor mit den Radien [mm] r_{i}, r_{a} [/mm] und dem Öffnungswinkel [mm] \alpha [/mm] als Querschnitt besitzt. Zwischen den ideal elektrisch leitfähigen Elektroden (äußere und innere Zylindermantelfläche), die als Äquipotentialflächen aufgefasst werden können, befindet sich ein Material mit ortsabhängiger Permittivität [mm] \epsilon(\rho) [/mm] und Leitfähigkeit [mm] \kappa(\varphi). [/mm] Der Widerstand ist an eine ideale Gleichspannungsquelle mit der Spannung [mm] U_{0} [/mm] angeschlossen. Die zu untersuchende längshomogene Struktur befindet sich im nichtleitenden Freiraum.
a) Welche vereinfachenden Annahmen bezüglich der Koordinatenabhängigkeit des elektrischen Potentials lassen sich treffen? Geben Sie diese explizit an. Verwenden Sie das kreiszylindrische Koordinatensystem [mm] (\rho,\varphi,z). [/mm] |
Hallo zusammen!
1.) Mein Lösungsversuch für diese Aufgabe lautet wie folgt:
Für den Fall, dass ich zwischen den ideal leitfähigen Elektroden des Zylinders eine Gleichspannung [mm] U_{0} [/mm] anlege, bildet sich im Zwischenraum der Elektroden ein elektrostatische Feld, bzw. ein stationäres Strömungsfeld aus, wobei die Feldlinien senkrecht auf die Kontaktflächen auftreten. (Einheits-)Spannvektoren der Äquipotentialflächen sind demnach für einen gegebenen Radius [mm] \rho_{0}, [/mm] mit [mm] \rho_{0}\in[r_{i},r_{a}] [/mm] die Richtungen [mm] \vec{e}_{\varphi} [/mm] und [mm] \vec{e}_{z}, [/mm] sodass [mm] \Phi=\Phi(\rho) [/mm] mit [mm] \bruch{\partial}{\partial{\varphi}}=\bruch{\partial}{\partial{z}}=0 [/mm] gilt. Wäre diese Begründung formal korrekt und ausreichend?
2.) Die allgemeine skalare Potentialgleichung des stationären Strömungsfeldes für inhomogene, isotrope und lineare Leitfähigkeiten lautet ja
[mm] div(({\kappa})grad\Phi)=0 [/mm]
In diesem Fall ist die Leitfähigkeit abhängig vom Winkel [mm] \varphi, [/mm] während das Potential abhängig ist vom Radius [mm] \rho. [/mm] Gibt es eine mathematische Schreibweise, mit der man ausdrückt, dass das Potential nicht abhängig ist von [mm] \varphi? [/mm] Für eine Vereinfachung der Potentialgleichung auf [mm] \Delta\Phi=0 [/mm] bräuchte ich eine solche knappe Argumentation.
Viele Dank und viele Grüße,
Marcel
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:14 Sa 04.06.2011 | Autor: | isi1 |
Sehr einfach wird die Berechnung, Marcel, wenn Du die im folgenden Bild angegebene Transformation vornimmst. Die vom Radius abhängige Leitfähigkeit und das vom Winkel abhängige epsilon lässt sich leicht einbauen.
[Dateianhang nicht öffentlich]
Dateianhänge: Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 11:58 Sa 04.06.2011 | Autor: | Marcel08 |
Hallo!
Vielen Dank erst einmal! Die Berechnung ist mir soweit einleuchtend. Aber wie sieht es nun mit der Begründung im Hinblick auf die Koordinatenvereinfachungen aus? Ist das von mir geschriebene richtig, bzw. ausreichend? Und gibt es eine knappe mathematische Schreibweise, mit der man ausdrückt, dass eine Funktion [mm] f(\rho) [/mm] nicht von [mm] \varphi [/mm] abhängig ist?
Viele Grüße, Marcel
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:36 So 05.06.2011 | Autor: | isi1 |
Das sagt schon die Aufgabenstellung aus.
Wichtig ist, dass von epsilon auf die Dauer bei Gleichfeld nichts abhängt, wenn die Feldstärke durch die Leitfähigkeit bestimmt ist. Nur bei Wechselstrom hätte das einen Einfluss - oder wenn die Leitfähigkeit irgendwo = 0 wird.
|
|
|
|