Stammfunktion bilden < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:14 Mo 21.02.2005 | Autor: | ziska |
Bei der Aufgabe, in denen es um Stammfunktion bilden geht, hab ich desöfteren Probleme, so wie jetzt auch.
gegeben sind folgende Funktionen:
f(x)= [mm] tan^2 [/mm] x
= tanx * tanx
So weit, so klar, aber mithilfe der Partiellen Integration komme ich nicht weiter. Hab dann hinterher nen Integral , welches ich nicht weiter bestimmt bekomme.
f(x)= 0,5 tan(2x)
=>F(x)= -ln (cosx) +c
Aber, wie komme ich auf diese Lösung?!?
Mir ist die Stammfunktion ja auch logisch nachvollziehbar, aber ich komme selbst nicht auf den richtigen Lösungsweg. Habs schon über Partielle Integration und Substitution versucht, aber ergebnislos...
f(x)= 1+ [mm] tan^2 [/mm] x
Bei der Aufgabe hilft mir die Lösung der ersten Funktion ja, aber ich bin so langsam echt am verzweifeln! Meine Rechenwege hab ich eben aus lauter deprimiertheit zerstört. is echt blöd, dat ich die 3 aufgaben net hinbekomme- immerhin waren es ja 10 aufgaben!!!
LG,
ziska
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:49 Mo 21.02.2005 | Autor: | Loddar |
Hallo Ziska!
> f(x)= 0,5 tan(2x)
> =>F(x)= -ln (cosx) +c
Einfach etwas umformen bzw. Definition des [mm] $\tan$ [/mm] anwenden:
$f(x) \ = \ 0,5 * [mm] \tan(2x) [/mm] \ = \ [mm] \bruch{1}{2} [/mm] * [mm] \bruch{\sin(2x)}{\cos(2x)} [/mm] \ = \ [mm] \red{-} \bruch{1}{2} [/mm] * [mm] \bruch{\red{-}\sin(2x)}{\cos(2x)} [/mm] \ = \ - [mm] \bruch{1}{4} [/mm] * [mm] \bruch{-2 * \sin(2x)}{\cos(2x)}$
[/mm]
Nun steht im Zähler exakt die Ableitung des Zählers.
Damit gilt: [mm] $\integral_{}^{} {\bruch{f'(x)}{f(x)} \ dx} [/mm] \ = \ [mm] \ln \left| f(x)\right| [/mm] \ + \ C$
Das Ergebnis muß auch lauten: $F(x) \ = \ - [mm] \bruch{1}{4} [/mm] * [mm] \ln \left| \ \cos(\red{2}x) \ \right| [/mm] \ + \ C$
Loddar
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:21 Mo 21.02.2005 | Autor: | andreas |
hi
bei der esten aufgabe hilft vielleicht folgende umformung mit hilfe von [mm] $\sin^2 [/mm] x + [mm] \cos^2 [/mm] x = 1$:
[m] \tan^2 = \left( \frac{\sin x}{\cos x} \right)^2 = \frac{\sin^2x}{\cos^2 x} = \frac{1 - \cos^2x}{\cos^2x} = \frac{1}{\cos^2x} + 1 [/m].
wenn du nun weißt, dass [mm] $(\tan [/mm] x)' = [mm] \frac{1}{\cos^2x}$ [/mm] ist, sollte sich der letzte ausdruck einfach integrieren lassen.
grüße
andreas
|
|
|
|