www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Stabilisator und normale UG
Stabilisator und normale UG < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stabilisator und normale UG: Idee ,Gegenbeispiel
Status: (Frage) beantwortet Status 
Datum: 01:37 So 20.01.2013
Autor: Decehakan

Aufgabe
Sind die Isotropien(Stabilisator,Standgruppen) normale Untergruppen ?

Naja bin gerade am nachdenken und glaube miterweile dass nicht jede Stabilisator ein normal Teiler ist.Jetzt fehlt mir noch die Überzeugung (das Gegenbeispiel ) ......

Denn aus der Definition für Stabilsatoren finde ich kein Weg zum Beweis der Normalteiler.

Denn es gilt ja : für g [mm] \varepsilon [/mm] G und m [mm] \varepsilon [/mm] M gilt ja :

1*m=m

und g,h [mm] \varepsilon [/mm] G gilt die zweite Eigenschaft (g*h)m=g(h*m).

mfg

        
Bezug
Stabilisator und normale UG: Antwort
Status: (Antwort) fertig Status 
Datum: 12:27 So 20.01.2013
Autor: hippias


> Sind die Isotropien(Stabilisator,Standgruppen) normale
> Untergruppen ?
>  Naja bin gerade am nachdenken und glaube miterweile dass
> nicht jede Stabilisator ein normal Teiler ist.

Diese Vermutung ist richtig.

> Jetzt fehlt
> mir noch die Überzeugung (das Gegenbeispiel ) ......
>  
> Denn aus der Definition für Stabilsatoren finde ich kein
> Weg zum Beweis der Normalteiler.
>  
> Denn es gilt ja : für g [mm]\varepsilon[/mm] G und m [mm]\varepsilon[/mm] M
> gilt ja :
>  
> 1*m=m
>  
> und g,h [mm]\varepsilon[/mm] G gilt die zweite Eigenschaft
> (g*h)m=g(h*m).
>  
> mfg  

Das ist mir ziemlich unverstaendlich. Bestimme einfach ein paar Standgruppen; es muesste grosser Zufall sein, wenn die normal sein sollten.

Bezug
                
Bezug
Stabilisator und normale UG: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:55 So 20.01.2013
Autor: Decehakan

ja hab ich gegenbeispiel gefunden danke für die unterstützung ;-)

mfg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]