www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Sphäre Integral
Sphäre Integral < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sphäre Integral: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 11:40 Di 20.01.2015
Autor: Topologe

Aufgabe
Sei [mm] S^{2}=\{x,y,z)\in \IR^{3};x^{2}+y^{2}+z^{2}=1\}. [/mm] Berechnen Sie das Integral

[mm] \integral_{S^{2}}(x^{2}+y^{2}-\lamda*z^{2})dS [/mm]

Lösung:
Wir wählen Kugelkoordinaten: [mm] \psi(\phi,\theta)=(cos(\phi)cos(\theta),sin(\phi)cos(\theta),sin(\theta)). [/mm] Die Gramsche Determinante für diese Karte ist [mm] cos(\theta). [/mm] Somit erhalten wir
[mm] \integral_{S^{2}}(x^{2}+y^{2}-\lambda*z^{2})dS [/mm]  = [mm] \integral_{S^{2}}(1-(1+\lambda)z^{2})dS [/mm] = [mm] \integral_{0}^{2\pi}(\integral_{-\bruch{\pi}{2}}^{\bruch{\pi}{2}}(1-(1+\lambda)sin^{2}(\theta))cos(\theta)d\phi)d\theta [/mm] = [mm] 2\pi[sin(\theta)-(1+\lambda)\bruch{1}{3}sin^{3}(\theta)]_{-\bruch{\pi}{2}}^{\bruch{\pi}{2}} [/mm]
[mm] =2\pi(\bruch{4}{3}-\bruch{2\lambda}{3}). [/mm]


Ok, also mir ist der Schritt überhaupt nicht klar von:

[mm] \integral_{0}^{2\pi}(\integral_{-\bruch{\pi}{2}}^{\bruch{\pi}{2}}(1-(1+\lambda)sin^{2}(\theta))cos(\theta)d\phi)d\theta [/mm] = [mm] 2\pi[sin(\theta)-(1+\lambda)\bruch{1}{3}sin^{3}(\theta)]_{-\bruch{\pi}{2}}^{\bruch{\pi}{2}} [/mm]

Eigentlich müsste man hier doch zuerst in der inneren Klammer nach [mm] \phi [/mm] aufleiten, aber wie es für mich aussieht, wurde innen nach [mm] \theta [/mm] und aussen nach [mm] \phi [/mm] aufgeleitet. Kann mir das vllt jemand erklären, was ich hier übersehe? :-)


LG

        
Bezug
Sphäre Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 11:45 Di 20.01.2015
Autor: fred97


> Sei [mm]S^{2}=\{x,y,z)\in \IR^{3};x^{2}+y^{2}+z^{2}=1\}.[/mm]
> Berechnen Sie das Integral
>  
> [mm]\integral_{S^{2}}(x^{2}+y^{2}-\lamda*z^{2})dS[/mm]
>  Lösung:
>  Wir wählen Kugelkoordinaten:
> [mm]\psi(\phi,\theta)=(cos(\phi)cos(\theta),sin(\phi)cos(\theta),sin(\theta)).[/mm]
> Die Gramsche Determinante für diese Karte ist [mm]cos(\theta).[/mm]
> Somit erhalten wir
>  [mm]\integral_{S^{2}}(x^{2}+y^{2}-\lambda*z^{2})dS[/mm]  =
> [mm]\integral_{S^{2}}(1-(1+\lambda)z^{2})dS[/mm] =
> [mm]\integral_{0}^{2\pi}(\integral_{-\bruch{\pi}{2}}^{\bruch{\pi}{2}}(1-(1+\lambda)sin^{2}(\theta))cos(\theta)d\phi)d\theta[/mm]
> =
> [mm]2\pi[sin(\theta)-(1+\lambda)\bruch{1}{3}sin^{3}(\theta)]_{-\bruch{\pi}{2}}^{\bruch{\pi}{2}}[/mm]
>  [mm]=2\pi(\bruch{4}{3}-\bruch{2\lambda}{3}).[/mm]
>  
>
> Ok, also mir ist der Schritt überhaupt nicht klar von:
>  
> [mm]\integral_{0}^{2\pi}(\integral_{-\bruch{\pi}{2}}^{\bruch{\pi}{2}}(1-(1+\lambda)sin^{2}(\theta))cos(\theta)d\phi)d\theta[/mm]
> =
> [mm]2\pi[sin(\theta)-(1+\lambda)\bruch{1}{3}sin^{3}(\theta)]_{-\bruch{\pi}{2}}^{\bruch{\pi}{2}}[/mm]
>  
> Eigentlich müsste man hier doch zuerst in der inneren
> Klammer nach [mm]\phi[/mm] aufleiten, aber wie es für mich
> aussieht, wurde innen nach [mm]\theta[/mm] und aussen nach [mm]\phi[/mm]
> aufgeleitet. Kann mir das vllt jemand erklären, was ich
> hier übersehe? :-)


[mm] f(\theta):=1-(1+\lambda)sin^{2}(\theta))cos(\theta) [/mm] ist bezüglich [mm] \phi [/mm] konstant, also ist

[mm] \integral_{0}^{2 \pi}{f(\theta) d \phi}= [/mm] 2 [mm] \pi f(\theta) [/mm]

FRED

>  
>
> LG


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]