www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Skalarprodukte" - Skalarprodukt bzgl. Matrix B
Skalarprodukt bzgl. Matrix B < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Skalarprodukt bzgl. Matrix B: Tipp
Status: (Frage) beantwortet Status 
Datum: 11:38 Fr 15.10.2010
Autor: steffenhst

Aufgabe
Sei M ein komplexe Matrix, Hermitesch und positiv definit. <x,y>Sei weiter [mm]_{M}[/mm] = [mm]y^HMx[/mm].

a.) Ist [mm]_{M}[/mm] ein Skalarprodukt.
b.) Bestimme für alle A die adjungierte Matrix [mm]A'[/mm] bzgl. </x,y>[mm]_{M}[/mm], d.h. die [mm]A'[/mm] für die gilt: [mm]_{M}[/mm] = [mm]_M[/mm]
c.) Charaktiersiere die Matrizen A, die
- selbstadjungiert bzgl. [mm]_{M}[/mm] sind, für die also [mm]A'[/mm] = A
- unitär bzgl. [mm]_{M}[/mm] sind, für die also [mm]A' = A^{-1}[/mm]


Hallo an alle,

ich beschäftige mich seit kurzem nochmal mit linearer Algebra. Bei dieser Aufgabe habe ich Probleme.

a.) ist klar.
b.) hier weiß ich nicht weiter:

Nach Vorraussetzung soll ja gelten: [mm]_{M}[/mm] = [mm]_M[/mm]. Ich habe das einfach mal eingesetzt:

[mm]_{M}[/mm] = [mm]y^H MAx[/mm]

andererseits ist [mm]_{M} = (A'y)^HMx = y^HA'^HMx = y^H(MA')^Hx[/mm]

also MA = [mm](MA')^H[/mm] bzw. MA = [mm]A'^H M[/mm]

heißt das dann, dass die adjungierten Matrizen A' genau diejenigen sind, für die MA = [mm]A'^H M[/mm] ist? Oder muss man das noch weiter ausrechnen? Ich habe z.B. mal A' = [mm]A^H gesetzt. Dann ist A'^HM = (A^H)^H M = AM = (MA)^H.[/mm]. Also kann A' nicht [mm] A^H [/mm] sein. Ist es also doch der Ausdruck von vorher oder muss man hier eine konkretes A' herausbekommen. Ich hoffe das ist verständlich. Vielleicht könnt ihr mir helfen.

Danke, Steffen


        
Bezug
Skalarprodukt bzgl. Matrix B: Antwort
Status: (Antwort) fertig Status 
Datum: 15:42 Fr 15.10.2010
Autor: mathfunnel

Hallo Steffen,

$M$ ist invertierbar, also kann man $MA =  A'^H M$ nach $A'$ auflösen.

LG mathfunnel


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]