www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "stochastische Prozesse" - Separable Prozesse
Separable Prozesse < stoch. Prozesse < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Separable Prozesse: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:34 Sa 13.11.2010
Autor: kuemmelsche


Hallo zusammen,

ich hab im Bezug zu separablen stochastischen Prozesse eine Bemerkung gelesen, in der stand, dass jeder stochastische Prozess zumindest eine separable Kopie hat, d.h. für ein stochastischen Prozess [mm]X(t)[/mm] gibt es immer einen separablen Prozess [mm]Y(t)[/mm] mit [mm]P(X(t)=Y(t))=1[/mm] also für [mm]Y[/mm] def. für [mm]0\leq t \leq 1[/mm] und [mm]\omega \in \Omega[/mm] gibt es ein [mm]\Omega_0[/mm] mit [mm]P(\Ommega_0)=1[/mm] und eine dichte Teilmenge [mm]S[/mm] von [0,1], sodass für alle abgeschlossen Teilmengen [mm]F[/mm] von [mm]\IR[/mm] und jedes offene Intervall [mm]I[/mm] aus (0,1)
[mm]\{ \omega \in \Omega : Y(t,\omega) \in F, \forall t \in I \cap S \} \backslash \{ \omega \in \Omega : Y(t,\omega) \in F, \forall t \in I \} [/mm]  
eine Teilmenge vom Komplement von [mm]\Omega_0[/mm] ist.

D.h. wenn [mm]Y(I \cap S,\omega)[/mm] in [mm]F[/mm] ist, auch [mm]Y(I,\omega)[/mm] in [mm]F[/mm] ist, mit Wahrscheinlichkeit 1.

Ich versuche seit einiger Zeit rauszufinden, wie ich dieses Prozess konstruiere, oder in welchem Satz diese Existenz garantiert wird... Wenn ich bei [mm]Y[/mm] einfach die kritischen Stellen, also da, wo [mm]X(I)[/mm] nicht in [mm]F[/mm] ist, obwohl [mm]X(S)[/mm] in [mm]F[/mm] ist, durch den Grenzwert einer Folge [mm]X(s_n)[/mm] für [mm]s_n \in S[/mm], dann ist [mm]Y[/mm] separabel, aber ich kann nicht wirklich zeigen, dass [mm]P(X(t)=Y(t))=1[/mm].

Kann mir jemand helfen?

Danke schonmal!

lg Kai



        
Bezug
Separable Prozesse: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:55 So 14.11.2010
Autor: kuemmelsche

Hat denn niemand eine Idee?


Bezug
        
Bezug
Separable Prozesse: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Mo 15.11.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]