www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Elektrotechnik" - Schwingungsfähige Systeme
Schwingungsfähige Systeme < Elektrotechnik < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Elektrotechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schwingungsfähige Systeme: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 07:20 Di 13.06.2006
Autor: Siegfried

Guten morgen,

bei der Untersuchung eines Netzwerks aus mehreren komplexen Bauteilen komme ich auf folgende Gleichung für die Admittanz des Systems:

[mm] \underline{Y}(\omega)=j\omega^{3}\frac{L_{1}\left(\frac{1}{\omega_{2}^{2}}-1\right)+L_{2}\left(\frac{1}{\omega_{1}^{2}}-1\right)}{\frac{\omega^{2}}{\omega_{1}^{2}}+\frac{\omega^{2}}{\omega_{2}^{2}}-\frac{\omega^{4}}{\omega_{1}^{2}\omega_{2}^{2}}-1}+\frac{\omega^{2}}{Z_{3}-j\frac{\omega}{L_{3}}-\omega_{3}^{2}} [/mm]

Die Betragsfunktion [mm] |Y(\omega)| [/mm] hat zwei Unendlichkeitsstellen bei [mm] \omega=\omega_{1} [/mm] und [mm] \omega=\omega_{2}. [/mm] Wenn man nun an den Werten [mm] L_{1}, L_{2} [/mm] und [mm] L_{3} [/mm] ein bischen schraubt bekommt man noch ein lokales Maximum. Heisst das, dass das System an dieser Stelle ebenfalls bevorzugt schwingt?

Ich bin für jede Anregung dankbar.

Vielen Dank, Siegfried.

Ich habe diese Frage auf keiner anderen Seite gestellt.

        
Bezug
Schwingungsfähige Systeme: Schwingungsfähige Systeme
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:07 Do 15.06.2006
Autor: Schwangerepaepstin

Hallo Siegfried,

eine kurze Frage zu deinem Problem:

Wo hat dein System die Renonanz. Ein mehrfachbedingtes Schwingen bzw. weitere lokale Maximas sind in einem komplexen System immer möglich.

Schwangerepaepstin

Bezug
                
Bezug
Schwingungsfähige Systeme: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:00 Fr 16.06.2006
Autor: Siegfried

Es schwingt vermutlich an der Stelle des Maximas.

Es sind nicht alle Parameter für alle Bauteile bekannt; ich dachte, es ist vielleicht möglich die fehlenden Parameter anhand der Gleichung zu ermitteln...

Siegfried

Bezug
        
Bezug
Schwingungsfähige Systeme: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:20 Do 22.06.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Elektrotechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]