www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - Schwankung berechnen
Schwankung berechnen < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schwankung berechnen: Tipp
Status: (Frage) überfällig Status 
Datum: 15:36 Mi 09.12.2015
Autor: Boson

Aufgabe
Berechnen Sie die Schwankung [mm] \Delta \hat{l}_x [/mm] für die Zustände |l,m>, die Eigenzustände von [mm] \hat{l}^2 [/mm] und [mm] \hat{l}_z [/mm] sind.

Stelle [mm] \hat{l}_x [/mm] mit Hilfe von [mm] \hat{l}_{\pm}=\hat{l}_x\pm i\hat{l}_y [/mm] dar.

Verwende [mm] \hat{l}_{\pm}|l,m>=\hbar\wurzel{l(l+1)-m(m\pm 1)}|l,m\pm [/mm] 1>

Hallo, das ist vielleicht nur ein blöder Fehler, aber ich komm nicht drauf.

Mit [mm] \hat{l}_{\pm}=\hat{l}_x\pm i\hat{l}_y [/mm] folgt [mm] \hat{l}_{+}+\hat{l}_{-}=2\hat{l}_{x}\Rightarrow \hat{l}_x=\bruch{1}{2}(\hat{l}_+-\hat{l}_-) [/mm]

[mm] \Delta \hat{l}_x=\wurzel{-()^2} [/mm]

Man sieht schnell, dass [mm] =0, [/mm] wegen Orthogonalität der Eigenzustände.

[mm] \hat{l}_x^2=\bruch{1}{4}(\hat{l}_+^2-\hat{l}_+\hat{l}_--\hat{l}_-\hat{l}_++\hat{l}_-^2) [/mm]

[mm] [/mm] und [mm] [/mm] ergeben 0

[mm] [/mm] und [mm] [/mm] ergeben jeweils [mm] \hbar\wurzel{l(l+1)-m(m+1)}*\hbar\wurzel{l(l+1)-m(m-1)} [/mm]

daraus erggibt sich also

[mm] =\bruch{\hbar^2}{2}\wurzel{l(l+1)-m(m+1)}*\wurzel{l(l+1)-m(m-1)} [/mm]

Jetzt habe ich gelesen, dass [mm] <\hat{l}_x^2>=\bruch{l}{2}\hbar^2 [/mm] ist.

Das würde ja bedeuten, dass [mm] \wurzel{l(l+1)-m(m+1)}*\wurzel{l(l+1)-m(m-1)}=l. [/mm] Leider komme ich da nicht drauf, wenn ich das ausmultipliziere. Mach ich da etwas falsch?

Vielen Dank für eure Hilfe!

PS: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Schwankung berechnen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Fr 11.12.2015
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]