www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Interpolation und Approximation" - Schranke für eine Ableitung
Schranke für eine Ableitung < Interpol.+Approx. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schranke für eine Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:51 Do 29.10.2009
Autor: Steffi1988

Aufgabe
Die sogenannte Besselsche Funktion nullter Ordnung ist gegeben durch

f(x) := [mm] \bruch{1}{\pi} \* \integral_{0}^{\pi}{Cos(x*sin(t)) dt} [/mm]

- Geben Sie eine Schranke für die Ableitung von f an.

Hallo zusammen,
muss mich leider mit einem weiteren Problem an Euch wenden.
Habe die o.g. Aufgabe vor mir.

Wünschte ich könnte Ansätze hier hinschreiben, doch finde ich keine :(

Habt ihr einen Tip für mich wie ich vorgehen soll?
Das Integral stört irgendwie :)

Liebe Grüße

        
Bezug
Schranke für eine Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 00:40 Fr 30.10.2009
Autor: pelzig

Der Integrand und dessen partielle Ableitung nach x ist stetig, also kannst du Integration und Differentiation vertauschen: [mm] $$f'(x)=\frac{1}{\pi}\cdot\frac{d}{dx}\int_0^\pi\cos(x\cdot\sin [/mm] t)\ [mm] dt=\frac{1}{\pi}\cdot\int_0^\pi\frac{\partial}{\partial x}\cos(x\cdot\sin [/mm] t)\ [mm] dt=-\frac{1}{\pi}\int_0^\pi\sin(t)\cdot\sin(x\sin [/mm] t)\ dt$$ Nun erhälst du mit der fundamentalen Abschätzung des Integrals [mm]|f'(x)|\le 1[/mm].

Gruß, Robert

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]