www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Satndardmatrix, zyklische Basi
Satndardmatrix, zyklische Basi < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Satndardmatrix, zyklische Basi: Fragen, Berechnung
Status: (Frage) beantwortet Status 
Datum: 20:33 Di 17.05.2005
Autor: Marianne

Ich habe diese Frage in keinem anderen Forum gestellt.
Hallo Ich habe eine große Aufgabe bekommen, aber es hapert schon bei den Ansätzen.
Erstmal Teile der Aufgabe:
Betrachte den Endomorphismus f : [mm] R^{4} \to R^{4} [/mm] gegeben durch die Standardmatrix
[mm] A_{f} =\pmat{ 1 & 2 & 3 & 6 \\ 4 & 5 & 6 & -25 \\ 7 & 8 & 9 & \bruch{-23}{12} \\ 10 & 11 & 12 & -15 } [/mm]

und den Vektor v = (1, 2, 3, 4).
(a) Bestimme eine bezüglich f zyklische Basis B = (v, . . . , [mm] f^{k-1}(v)). [/mm]
(b) Bestimme [f | [mm] Lin(B)]_{B} [/mm]
(c) Bestimme das charakteristische Polynom der Matrix aus (b).
Ich habe Probleme bei a und b.
Wie bestimmt man so eine zyklische Basis und was bedeutet sie genau.
Bei b dasselbe
c kann ich dann leicht allein bestimmen
Noch eine Frage wie bestimmt man die Standardmatrix von p(f), wobei p(X) = 12X2 + 12X + 1 und diese für das Minimalpolynom?
Ich wäre für jede minimale Hilfe dankbar!!!

        
Bezug
Satndardmatrix, zyklische Basi: Antwort
Status: (Antwort) fertig Status 
Datum: 09:43 Mi 18.05.2005
Autor: Julius

Hallo Marianne!

>  Betrachte den Endomorphismus f : [mm]R^{4} \to R^{4}[/mm] gegeben
> durch die Standardmatrix
>  [mm]A_{f} =\pmat{ 1 & 2 & 3 & 6 \\ 4 & 5 & 6 & -25 \\ 7 & 8 & 9 & \bruch{-23}{12} \\ 10 & 11 & 12 & -15 }[/mm]
>  
> und den Vektor v = (1, 2, 3, 4).
>  (a) Bestimme eine bezüglich f zyklische Basis B = (v, . .
> . , [mm]f^{k-1}(v)).[/mm]

Hier brauchst du doch nur $f(v) = [mm] A_{f} \cdot [/mm] v$ auszurechnen, dann [mm] $f^2(v) =A_{f}^2 \cdot [/mm] v$, usw., solange, bis die Folge linear abhängig wird.

>  (b) Bestimme [f | [mm]Lin(B)]_{B}[/mm]

Naja, überlege dir mal:

Es gilt für [mm] $i=0,1,\ldots,k-2$: [/mm]

[mm] $f(f^i(v)) [/mm] = 0 [mm] \cdot [/mm] v + [mm] \ldots [/mm] + 0 [mm] \cdot f^i(v) [/mm] + 1 [mm] \cdot f^{i+1}(v) [/mm] + 0 [mm] \cdot f^{i+1}(v) [/mm] + [mm] \ldots [/mm] $

Es stehen also in der unteren Nebendiagonalen lauter Einsen, und ansonsten in den ersten Spalten nur Nullen.

Nur [mm] $f(f^{k-1}(v)$ [/mm] (also die letzte Spalte) ist spannend, denn das ist eine "wilde" Linearkombination der Basis. So wild allerdings auch nicht... Wenn du anschließend (c) berechnest, wirst du sehen, wo die Koeffizienten wieder auftauchen...

Viele Grüße
Julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]