www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - Risiken 1. und 2. Art
Risiken 1. und 2. Art < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Risiken 1. und 2. Art: Frage
Status: (Frage) beantwortet Status 
Datum: 20:13 So 06.02.2005
Autor: Kati

Hi!
Ich habe hier einen Alternativtest mit p0=0,2 und p1=0,4 und n=50
Meine Frage ist wie ich den Ablehnungsbereich bestimmen kann bei dem der Unterschied der Wahrscheinlichkeiten für beide Fehlentscheidungen am kleinsten ist.

Kati

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Risiken 1. und 2. Art: Antwort
Status: (Antwort) fertig Status 
Datum: 13:17 Mo 07.02.2005
Autor: Zwerglein

Hallo, kati,
zunächst mal: Bei der Aufgabe geht's nicht ohne "ein bissl Probieren" ab.
Weiter: Der Ablehnungsbereich der Hypothese H0 (p=0,2) ist gleichzeitig Annahmebereich für H1 (p=0,4) und umgekehrt.
Sagen wir: Der Annahmebereich von H0 sei {0; ... ;c},
der Ablehnungsbereich ist dann: {c+1; ... ; 50}

Nun ist zwar nicht vorgegeben, wie klein die Wahrscheinlichkeit des Fehlers 1. Art sein soll, aber probieren wir mal ein Signifikanzniveau von 0,05:
(Mit p=0,2:)  [mm] P(X\ge [/mm] c+1) [mm] \le [/mm] 0,05  oder: 1-P(X [mm] \le [/mm] c) [mm] \le [/mm] 0,05  
bzw. P(X [mm] \le [/mm] c) [mm] \ge [/mm] 0,95.
Ein Blick ins Tafelwerk zeigt: c [mm] \ge [/mm] 15.
Die tatsächliche Wahrsch. des Fehlers 1. Art beträgt für c=15 natürlich (wieder Tafelwerk!): 0,031.

Wie groß ist die Wahrsch. des Fehlers 2.Art für c=15,
also wie groß ist P(X [mm] \le [/mm] c) für c=15 (und p=0,4 !!)? Tafelwerk: 0,095.

Naja: Die Differenz zwischen beiden ist immerhin 0,064.

Wir versuchen, die beiden Wahrscheinlichkeiten "näher zusammenzubringen".

Probieren wir c=14:
Fehler 1. Art: 0,061; Fehler 2. Art: 0,054. Schon besser!

Aber gut genug? Probieren wir zur Sicherheit noch c=13:
Fehler 1.Art: 0,1106; Fehler 2.Art: 0,028. Schlechter!

Ergebnis: Kleinste Differenz für c=14. Der Ablehnungsbereich für H0 wird also am besten folgendermaßen gewählt: {15; ... 50}
(Bemerkung: Die 15 kommt zustande, weil wir im obigen Ansatz c+1 als Untergrenze genommen haben!)

mfG!
Zwerglein


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]