Restklasse, anord. < Analysis < Hochschule < Mathe < Vorhilfe
|
hallo.
ich hab ein problem mit folgender aufgabe:
Zeigen Sie, dass die Restklassenkörper Zp := Z/pZ, p Primzahl, sich nicht anordnen lassen.
also ich habe mir überlegt, entweder zeige ich, dass Zp eine endliche Menge ist. weiß jedoch nicht ob es eine ist, und falls ja, wie ich des beweisen soll.
dazu mal eine frage, was heißt denn Z/pZ genau, welchen zahlen sind da jetzt gemeint??
oder ich versuche die 3 axiome anzuwenden:
Symmetrei bzgl multiplikation, addition; trichotomie
aber des klappt bei mir net wirklich, komme da zu keinem ergebnis
auf dem blatt ist noch eine Anleitung gegeben: Zeigen Sie, dass eine Teilmenge M [mm] \subset [/mm] Zp für welche die Anordnungsaxiome
bezüglich 0 < x :, x 2 M gelten, leer ist.
also schonmal danke für die hilfe
|
|
|
|
also ich weiß jetzt was es mit der restklasse auf sich hat.
sie besitz p elemente also von 0 bis (p-1)
diese restklasse ist ja somit endlich, wie kann man denn sowas beweisen??
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 12:20 Do 09.11.2006 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|