www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Finanzmathematik" - Rentenauszahlung ISMA-Methode
Rentenauszahlung ISMA-Methode < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rentenauszahlung ISMA-Methode: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 21:52 Sa 31.01.2009
Autor: winaja

Aufgabe
Welche Rate kann man 20 Jahre lang am Anfang eines Quartals von einem mit 6,2% p. a. verzinsten Konto abheben, wenn der Anfangskontostand 105.000 € beträgt, das Konto vollständig abgeräumt werden darf und bei der Behandlung der Quartale die ISMA-Methode zugrundegelegt wird?

Wie ist die Berechnung? Bin schon mal auf das Ergebnis 3.056,07 € gekommen, weiß aber nicht mehr wie.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Rentenauszahlung ISMA-Methode: Antwort
Status: (Antwort) fertig Status 
Datum: 23:21 Sa 31.01.2009
Autor: reverend

Hallo winaja, [willkommenmr]

Schön, dass Du auch eine Musterlösung zur Kontrolle mitbekommen hast. Das ist sicher hilfreich.

Wir erwarten hier aber etwas anderes, nämlich eigene Lösungsansätze. Deine Hausaufgaben machst du am besten nämlich selbst, und wir helfen dir gern dabei. Das heißt zugleich, dass wir sie nicht machen.

Also - wie würdest Du an die Aufgabe herangehen? Was sagt Dir die ISMA-Methode, wie ist sie definiert, wie gehen die Quartale hier ein, wie kommt das "Abräumen" in Deinem Ansatz vor etc.?

Es macht nichts, wenn Dein Ansatz noch falsch ist. Dann suchen wir gern gemeinsam danach, wo es hakt. Aber so ganz ohne... - irgendwas werdet Ihr in der Vorlesung doch dazu gemacht haben, oder?

Leg mal los.

Herzliche Grüße,
reverend

Bezug
                
Bezug
Rentenauszahlung ISMA-Methode: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:22 So 01.02.2009
Autor: winaja

Ich habe keine Musterlösung zu diesem Fall bekommen. Bin durch eigen Lösung auf das Ergebnis gekommen. Allerdings ist das schon ein paar Wochen her. Zudem handelt es sich bei dieser Aufgabe um keine Hausaufgabe, die ich zu erledigen hätte. Befinde mich gerade in der Klausurvorbereitung und habe mich die letzten Tage hinlänglich mit der ISMA-Methode beschäftigt. War gestern 'nen halben Tag über der Aufgabe gesessen ohne auf die Lösung zu kommen. Bin so langsam am Verzweifeln.

Mein Lösungsansatz:

[mm]K_0*(1+ip)^m^n*\bruch{ip}{(1+ip)^m^n-1}[/mm]

Wobei ip der konforme Zinssatz ist.


Bezug
                        
Bezug
Rentenauszahlung ISMA-Methode: Antwort
Status: (Antwort) fertig Status 
Datum: 12:38 Mi 04.02.2009
Autor: Josef

Hallo winaja,

> Welche Rate kann man 20 Jahre lang am Anfang eines Quartals von einem >mit 6,2% p. a. verzinsten Konto abheben, wenn der Anfangskontostand >105.000 € beträgt, das Konto vollständig abgeräumt werden darf und bei >der Behandlung der Quartale die ISMA-Methode zugrundegelegt wird?

> Wie ist die Berechnung?

Du musst hier die sogenannte Sparkassenformel anwenden unter Berücksichtigung der vorschüssigen Ratenzahlungen und der ISMA-Methode.


Der Ansatz lautet dann:

[mm] 105.000*1,062^{20} [/mm] - [mm] r*1,015152128*\bruch{1,015152128^{4*20}-1}{0,015152128} [/mm] = 0



r = 2.239,75


Falls du noch Fragen hierzu hast, dann stelle sie bitte.


Viele Grüße
Josef

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]