Rekursiv definierte Folge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Es seien K,q [mm] \in [/mm] R mit K,q > 0. Die Folge [mm] (a_{n})_{n \in \IN 0} [/mm] sei rekursiv definiert durch [mm] a_{0} [/mm] := 1 und
[mm] a_{n+1} [/mm] := [mm] \bruch{q*a_{n}}{K + a_{n}}
[/mm]
Zeigen Sie:
a) Die Folge [mm] (a_{n})_{n \in \IN o} [/mm] ist wohldefiniert mit [mm] a_{n} [/mm] > 0 für alle n [mm] \in \IN [/mm] o.
b) Falls [mm] a_{n+1} \le a_{n} [/mm] für ein n gilt, so ist auch [mm] a_{n+2} \le a_{n+1}
[/mm]
c) Falls [mm] a_{n+1} \ge a_{n} [/mm] für ein n gilt, so ist auch [mm] a_{n+2} \ge a_{n+1}
[/mm]
d) Es gilt [mm] 0
e) dass [mm] (a_{n})_{n \in \IN} [/mm] konvergiert und bestimmen Sie den Grenzwert (in Abhängigkeit von q,K). |
Hallo zusammen,
ich hänge momentan an dieser Aufgabe fest.
zu a) die Folge lässt sich ja auch als Funktion darstellen:
f: [mm] \IN [/mm] -> [mm] \IR [/mm] , n -> [mm] a_{n} [/mm]
mit a(n)=1 falls n = 0 und a(n) = [mm] \bruch{q*a_{n}}{K + a_{n}} [/mm] für n [mm] \ge [/mm] 1.
Für [mm] a_{n} [/mm] > 0 ist diese Funktion doch automatisch wohldefiniert, weil 1 in [mm] \IR [/mm] liegt und beim Bruch der Nenner so nie 0 werden kann. ( Da K ja auch als > 0 definiert wurde.)
Ich weiß ehrlich gesagt nicht, was ich da formal beweisen kann..
bei b) und c) soll man ja zeigen, dass die Folge monoton wachsend/fallend ist. Je nachdem wie groß q und K sind. Wenn man es als Implikation auffasst, kann man ja annehmen, dass [mm] a_{n+1} \le a_{n} [/mm] und daraus folgern dass [mm] a_{n+2} \le a_{n+1} [/mm] . Doch irgendwie komme ich auf keinen Ansatz..
als Kriterium für die Konvergenz gilt ja unter andrem, dass die Folge monoton und beschränkt ist oder? Das hab ich ja (wenn man es denn dann schafft) in b)-d) gezeigt, somit wüsste ich nicht, wie ich dann noch weiter drumherum neu beweisen soll dass die FOlge konvergiert. Also in e).
Vielen Dank für alle Tipps :)
|
|
|
|
Hallo,
> Es seien K,q [mm]\in[/mm] R mit K,q > 0. Die Folge [mm](a_{n})_{n \in \IN 0}[/mm]
> sei rekursiv definiert durch [mm]a_{0}[/mm] := 1 und
> [mm]a_{n+1}[/mm] := [mm]\bruch{q*a_{n}}{K + a_{n}}[/mm]
>
> Zeigen Sie:
> a) Die Folge [mm](a_{n})_{n \in \IN o}[/mm] ist wohldefiniert mit
> [mm]a_{n}[/mm] > 0 für alle n [mm]\in \IN[/mm] o.
> b) Falls [mm]a_{n+1} \le a_{n}[/mm] für ein n gilt, so ist auch
> [mm]a_{n+2} \le a_{n+1}[/mm]
> c) Falls [mm]a_{n+1} \ge a_{n}[/mm] für ein n
> gilt, so ist auch [mm]a_{n+2} \ge a_{n+1}[/mm]
> d) Es gilt [mm]0
> q für alle n [mm]\in \IN[/mm] .
> e) dass [mm](a_{n})_{n \in \IN}[/mm] konvergiert und bestimmen Sie
> den Grenzwert (in Abhängigkeit von q,K).
> Hallo zusammen,
>
> ich hänge momentan an dieser Aufgabe fest.
>
> zu a) die Folge lässt sich ja auch als Funktion
> darstellen:
> f: [mm]\IN[/mm] -> [mm]\IR[/mm] , n -> [mm]a_{n}[/mm]
> mit a(n)=1 falls n = 0 und a(n) = [mm]\bruch{q*a_{n}}{K + a_{n}}[/mm]
> für n [mm]\ge[/mm] 1.
Hier meinst du [mm]\red{a(n+1)}[/mm]
Richtig!
> Für [mm]a_{n}[/mm] > 0 ist diese Funktion doch automatisch
> wohldefiniert, weil 1 in [mm]\IR[/mm] liegt und beim Bruch der
> Nenner so nie 0 werden kann. ( Da K ja auch als > 0
> definiert wurde.)
> Ich weiß ehrlich gesagt nicht, was ich da formal beweisen
> kann..
Das folgt sofort, wenn [mm]a_n>0[/mm] ist für alle [mm]n\in\IN[/mm]
Das könntest du induktiv zeigen ...
>
>
> bei b) und c) soll man ja zeigen, dass die Folge monoton
> wachsend/fallend ist. Je nachdem wie groß q und K sind.
> Wenn man es als Implikation auffasst, kann man ja annehmen,
> dass [mm]a_{n+1} \le a_{n}[/mm] und daraus folgern dass [mm]a_{n+2} \le a_{n+1}[/mm]
> . Doch irgendwie komme ich auf keinen Ansatz..
[mm]a_{n+1}\le a_n[/mm] bedeutet doch [mm]\frac{qa_n}{K+a_n}\le a_n[/mm]
Forme das mal weiter um zu [mm]\red{q}\leq K+a_n\red{0[/mm]
Dann [mm]a_{n+2}=\frac{qa_{n+1}}{K+a_n}<\frac{qa_{n+1}}{K}[/mm] warum?
Dann baue die rote Abschätzung ein ...
>
> als Kriterium für die Konvergenz gilt ja unter andrem,
> dass die Folge monoton und beschränkt ist oder? Das hab
> ich ja (wenn man es denn dann schafft) in b)-d) gezeigt,
> somit wüsste ich nicht, wie ich dann noch weiter drumherum
> neu beweisen soll dass die FOlge konvergiert. Also in e).
Jo, damit hättest du die Konvergenz.
Den Grenzwert a kannst du bestimmen mit Hilfe von: [mm]\lim\limits_{n\to\infty}a_n \ = \ a \ = \ \lim\limits_{n\to\infty}a_{n+1}[/mm]
>
> Vielen Dank für alle Tipps :)
Gruß
schachuzipus
|
|
|
|
|
> Das folgt sofort, wenn [mm]a_n>0[/mm] ist für alle [mm]n\in\IN[/mm]
>
> Das könntest du induktiv zeigen ...
>
Okay, ja so hatte ich mir das auch schon gedacht. Dann wäre zu zeigen, dass K + [mm] a_{n} [/mm] immer >0 ist als Behauptung oder?
> [mm]a_{n+1}\le a_n[/mm] bedeutet doch [mm]\frac{qa_n}{K+a_n}\le a_n[/mm]
>
> Forme das mal weiter um zu [mm]\red{q}\leq K+a_n\red{
> (letzteres wegen [mm]a_n>0[/mm]
Warum < K? Müsste nicht K+ [mm] a_{n} [/mm] größer sein als K wenn [mm] a_{n} [/mm] auf jeden Fall größer ist als 0?
>
> Dann [mm]a_{n+2}=\frac{qa_{n+1}}{K+a_n}<\frac{qa_{n+1}}{K}[/mm]
> warum?
Also wenn die Gleichung so da steht, ist klar warum die Abschätzung gelten muss. [mm] (a_{n} [/mm] ist > 0 also wird Nenner größer und gesamte Zahl kleiner als ohne [mm] a_{n}) [/mm]
Aber warum steht im Nenner überhaupt [mm] a_{n} [/mm] und nicht [mm] a_{n+1} [/mm] ? Da blicke ich noch nicht ganz durch.
> Dann baue die rote Abschätzung ein ...
>
>
> Den Grenzwert a kannst du bestimmen mit Hilfe von:
> [mm]\lim\limits_{n\to\infty}a_n \ = \ a \ = \ \lim\limits_{n\to\infty}a_{n+1}[/mm]
So nach der Methode würde ich als Grenzwert a = q-K bekommen. Habe dies mal anhand von Beispielen in einer Excel Tabelle nachvollzogen und es müsste stimmen, allerdings nur wenn q > K ..
Darf man diese Aussage einfach so verwenden ohne zusätzlichen Beweis? In der Vorlesung hatten wir den soweit ich weiß bisher noch nicht..!
Vielen Dank für deine Mühe:)
|
|
|
|
|
Hallo nochmal,
> > Das folgt sofort, wenn [mm]a_n>0[/mm] ist für alle [mm]n\in\IN[/mm]
> >
> > Das könntest du induktiv zeigen ...
> >
>
> Okay, ja so hatte ich mir das auch schon gedacht. Dann
> wäre zu zeigen, dass K + [mm]a_{n}[/mm] immer >0 ist als Behauptung
> oder?
Jo, was aber dann wegen $K>0$ und [mm] $a_n>0$ [/mm] trivial ist
>
>
>
> > [mm]a_{n+1}\le a_n[/mm] bedeutet doch [mm]\frac{qa_n}{K+a_n}\le a_n[/mm]
> >
>
> > Forme das mal weiter um zu [mm]\red{q}\leq K+a_n\red{
> > (letzteres wegen [mm]a_n>0[/mm]
>
>
>
> Warum < K? Müsste nicht K+ [mm]a_{n}[/mm] größer sein als K wenn
> [mm]a_{n}[/mm] auf jeden Fall größer ist als 0?
Gut aufgepasst! Da habe ich in der Eile ein Vorzeichen verdreht
Das letzte < stimmt also nicht. Brauchen wir auch nicht. Es reicht [mm]\blue{q\le K+a_n}[/mm]
Also dann so:
[mm]a_{n+1}=\frac{\blue{q}a_{n+1}}{K+a_n} \ \blue{\leq} \ \frac{\blue{(K+a_n)}a_{n+1}}{K+a_n} \ = \ a_{n+1}[/mm]
Puh - gerettet
>
>
> >
> > Dann [mm]a_{n+2}=\frac{qa_{n+1}}{K+a_n}<\frac{qa_{n+1}}{K}[/mm]
> > warum?
>
> Also wenn die Gleichung so da steht, ist klar warum die
> Abschätzung gelten muss. [mm](a_{n}[/mm] ist > 0 also wird Nenner
> größer und gesamte Zahl kleiner als ohne [mm]a_{n})[/mm]
> Aber warum steht im Nenner überhaupt [mm]a_{n}[/mm] und nicht
> [mm]a_{n+1}[/mm] ? Da blicke ich noch nicht ganz durch.
>
>
> > Dann baue die rote Abschätzung ein ...
> >
>
>
>
> >
> > Den Grenzwert a kannst du bestimmen mit Hilfe von:
> > [mm]\lim\limits_{n\to\infty}a_n \ = \ a \ = \ \lim\limits_{n\to\infty}a_{n+1}[/mm]
>
>
> So nach der Methode würde ich als Grenzwert a = q-K
> bekommen. Habe dies mal anhand von Beispielen in einer
> Excel Tabelle nachvollzogen und es müsste stimmen,
> allerdings nur wenn q > K ..
> Darf man diese Aussage einfach so verwenden ohne
> zusätzlichen Beweis? In der Vorlesung hatten wir den
> soweit ich weiß bisher noch nicht..!
Welche Aussage? Dass [mm]\lim\limits_{n\to\infty}a_n=\lim\limits_{n\to\infty}a_{n+1}[/mm] ist (falls [mm]a_n[/mm] konvergiert)?
Das ist doch trivial - kannst du wohl verwenden. Oder frage deinen Tutor, Prof oder zeige es ...
>
>
> Vielen Dank für deine Mühe:)
Gruß
schachuzipus
|
|
|
|
|
Okay perfekt vielen Dank!!
Ich hätte noch eine Frage zur Beschränktheit, also Teilaufgabe d).
Ich hab angefangen dies mit Induktion zu beweisen. Induktions anfang und voraussetzung sind klar.
Es soll ja gelten [mm] 0
Wenn man dann im Induktionsschritt durch n -> n+1 auf :
0 < [mm] \bruch{q*a_{n}}{K+ a_{n}} \le [/mm] q kommt, inwiefern hilft mir dort die Induktionsvoraussetzung?
Irgendwie stört mich da egal wie ich es drehe das K..
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:19 So 22.11.2015 | Autor: | abakus |
Hallo,
du brauchst keine Induktion; ein indirekter Beweis sollte möglich sein.
Die Annahme [mm] $a_{n+1}=q$ [/mm] lässt sich leicht zum Widerspruch führen (die Annahme [mm] $a_{n+1}>q$ [/mm] sicher auch).
|
|
|
|
|
Vielen lieben Dank.
Ich hab es gelöst!
|
|
|
|