www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Reihen Konvergenz
Reihen Konvergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reihen Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:08 So 19.04.2009
Autor: StevieG

Aufgabe
Untersuchen sie die Reihen auf Konvergenz:

[mm] \summe_{n=0}^{\infty} (-1)^{n} (\bruch{4}{n})^{n} [/mm]

Zunächst habe ich das Leibnitz kriterium angewannt: [mm] (-1)^{n}bk [/mm]

Daraufhin Quotientenkriterium mit [mm] |\bruch{bk+1}{bk}| [/mm]

[mm] {\bruch{(\bruch{4}{n+1})^{n+1}}{(\bruch{4}{n})^{n}}} [/mm]

= [mm] \bruch{4^{n+1}}{(n+1)^{n+1}}* \bruch{n^{n}}{4^{n}} [/mm] = [mm] \bruch{4^{n+1}*n^{n}}{(n+1)^{n+1}*4^{n}} [/mm]

Ab hier weiss ich nicht weiter und ich habe probleme das zu kürzen.
brauche hilfe.

gruss

        
Bezug
Reihen Konvergenz: Leibniz-Kriterium
Status: (Antwort) fertig Status 
Datum: 20:13 So 19.04.2009
Autor: Loddar

Hallo Stevie!



Wenn Du das Leibnizkriterium anwendest, benötigst Du kein weiteres Konvergenzkriterium.

Nach Leibniz musst Du nachweisen, dass [mm] $\left(\bruch{4}{n}\right)^n$ [/mm] eine monoton fallende Nullfolge ist.


Alternativ zu Leibniz kannst Du auch das Quotientenkriterium anwenden. Oder hier noch schneller: das []Wurzelkriterium.


Gruß
Loddar


Bezug
        
Bezug
Reihen Konvergenz: Dein Weg
Status: (Antwort) fertig Status 
Datum: 20:18 So 19.04.2009
Autor: Loddar

Hallo Stevie!


Noch eine Anmerkung zu Deinem Weg mittels Quotientenkriterium.

Du kannst hier wie folgt zerlegen:
[mm] $$\bruch{4^{n+1}*n^n}{(n+1)^{n+1}*4^n} [/mm] \ = \ [mm] \bruch{4^n*4^1*n^n}{(n+1)^n*(n+1)^1*4^n} [/mm] \ = \ [mm] \bruch{4}{n+1}*\left(\bruch{n}{n+1}\right)^n [/mm] \ = \ [mm] \bruch{4}{n+1}*\bruch{1}{\left(\bruch{n+1}{n}\right)^n} [/mm] \ = \ [mm] \bruch{4}{n+1}*\bruch{1}{\left(1+\bruch{1}{n}\right)^n} [/mm] \ = \ ...$$

Gruß
Loddar


Bezug
                
Bezug
Reihen Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:21 So 19.04.2009
Autor: StevieG

Laut lösung:

...= [mm] \bruch{4}{n+1}*\bruch{n^{n}}{(n+1)^{n}} [/mm]

ich verstehe nicht wie das zustande kommt.

gruss

Bezug
                        
Bezug
Reihen Konvergenz: Potenzgesetze
Status: (Antwort) fertig Status 
Datum: 20:24 So 19.04.2009
Autor: Loddar

Hallo Stevie!


Hier habe ich zunächst durch [mm] $4^n$ [/mm] gekürzt und den Term [mm] $(n+1)^{n+1}$ [/mm] gemäß MBPotenzgesetz zerlegt:
[mm] $$(n+1)^{n+1} [/mm] \ = \ [mm] (n+1)^n*(n+1)^1$$ [/mm]

Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]