www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Rechteck in Ellipse
Rechteck in Ellipse < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rechteck in Ellipse: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 09:25 Do 07.01.2010
Autor: Pferd93

Aufgabe
Der Graph der Funktion [mm] f(x)=\bruch{1}{5}\wurzel{225-9x^{2}} [/mm] ist die Hälfte einer Ellipse, deren Mittelpunkt im Koordinatenursprung liegt.
Ein Rechteck soll so einbeschrieben werden, dass eine Seite auf der x-Achse liegt. Ermitteln Sie die Seitenlängen des Rechtecks, das maximalen Flächeninhalt hat!

Hallo!
Ich würde mich freuen wenn jemand mal meine Lösung Kontrollieren würde.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

[mm] f(x)=\bruch{1}{5}\wurzel{225-9x^{2}} [/mm]
A=ab
[mm] A=(2(\bruch{1}{5}\wurzel{225-9x^{2}}))*2x [/mm]
[mm] A'=-\bruch{12(2x^{2}-25)}{5(\wurzel{25-x^{2}})} [/mm]
Die ganze Formel 0 gesetzt und umgeformt...
[mm] x=\wurzel{12,5} [/mm]

[mm] a=2\wurzel{12,5} [/mm]
[mm] b=\bruch{1}{5}\wurzel{225-9*\wurzel{12,5}^{2}} [/mm]
[mm] b=\bruch{1}{5}\wurzel{112,5} [/mm]
[mm] A_{max}=2\wurzel{12,5}*\bruch{1}{5}\wurzel{112,5}=15 [/mm] FE

        
Bezug
Rechteck in Ellipse: Korrektur
Status: (Antwort) fertig Status 
Datum: 10:05 Do 07.01.2010
Autor: Roadrunner

Hallo Pferd!


> [mm]f(x)=\bruch{1}{5}\wurzel{225-9x^{2}}[/mm]
>  A=ab

[ok]


> [mm]A=(2(\bruch{1}{5}\wurzel{225-9x^{2}}))*2x[/mm]

Wo kommt hier der 2. Faktor mit der 2 her?


> [mm]A'=-\bruch{12(2x^{2}-25)}{5(\wurzel{25-x^{2}})}[/mm]

[notok] Wie bist Du auf diese Ableitung gekommen? Bitte rechne mal vor, denn ich habe etwas anderes erhalten.


Gruß vom
Roadrunner


Bezug
                
Bezug
Rechteck in Ellipse: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 17:28 Do 07.01.2010
Autor: Pferd93

Hallo Roadrunner!

Bei der formel für den Flächeninhalt gabs nen Denkfehler meinerseits.
Ich habe gedacht dass das Rechteck in die Gesammte Ellipse soll.

demnach ist die formel:
[mm] A=(\bruch{1}{5}\wurzel{225-9x^{2}})\cdot{}2x [/mm]

Und die Ableitung:
[mm] A'=\bruch{2*\wurzel{225-9*x^{2}}}{5}-\bruch{18*x^{2}}{5*\wurzel{225-9*x^{2}}} [/mm]

[mm] A_{0}=\wurzel{12,5} [/mm]

Das maximum müsste aber trozdem so sein (warscheinlich mittendrinn ausversehen wieder richtig gemacht)

[mm] A_{max}=2\wurzel{12,5}\cdot{}\bruch{1}{5}\wurzel{112,5}=15 [/mm]

Ist das da jetzt Richtig?

Bezug
                        
Bezug
Rechteck in Ellipse: Antwort
Status: (Antwort) fertig Status 
Datum: 18:03 Do 07.01.2010
Autor: M.Rex

Hallo.

Deine Ableitung ist korrekt.

[mm] A(x)=\overbrace{\bruch{1}{5}\wurzel{225-9x^{2}}}^{u}\overbrace{2x}^{v} [/mm]

ergibt mit Produkt (und Kettenregel für u')

[mm] A'(x)=\overbrace{\bruch{1}{5}\wurzel{225-9x^{2}}}^{u}\overbrace{2}^{v'}+\overbrace{\bruch{1}{5}*\bruch{1}{2*\wurzel{225-9x^{2}}}*(-18x)}^{u'}\overbrace{2x}^{v} [/mm]
[mm] =\bruch{2}{5}\wurzel{225-9x^{2}}-\bruch{36x^{2}}{10\wurzel{225-9x^{2}}} [/mm]
[mm] =\bruch{2}{5}\wurzel{225-9x^{2}}-\bruch{18x^{2}}{5\wurzel{225-9x^{2}}} [/mm]

Aber ich komme auf ein anderen Wert, bei dem A'(x)=0 wird, zeig doch da mal bitte deine Rechnung.

Marius

Bezug
                                
Bezug
Rechteck in Ellipse: Idee
Status: (Frage) beantwortet Status 
Datum: 16:47 Do 14.01.2010
Autor: Pferd93

So
Ich hab jezz alles nochma durchgerechnet.

[mm] A=\bruch{1}{5}\wurzel{225-9x^{2}}*2x [/mm]

Mit GTR Maximum berechnet

[mm] X_{max}=\wurzel{12,5} [/mm]

[mm] A_{max}=\bruch{1}{5}\wurzel{225-9\wurzel{12,5}^{2}}*2\wurzel{12,5} [/mm]

[mm] A_{max}=\wurzel{4,5}*\wurzel{50} [/mm]

[mm] A_{max}=15 [/mm] FE

muss passen

Bezug
                                        
Bezug
Rechteck in Ellipse: Antwort
Status: (Antwort) fertig Status 
Datum: 17:00 Do 14.01.2010
Autor: M.Rex

Hallo

Das sieht gut aus

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]