www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Finanzmathematik" - Ratenzahlung
Ratenzahlung < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ratenzahlung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:11 So 05.07.2015
Autor: Mathics

Aufgabe
Der Hobbykoch Alfons möchte sich einen Traum verwirklichen und sich endlich eine professionell eingerichtete Küche zulegen. In einem Möbelhaus findet er ein Exemplar, in das er sich sofort verliebt. Da er sich die stolze Summe von 45 000 Euro nicht leisten kann, fragt er den Verkäufer nach der Möglichkeit einer Ratentilgung. Die Höhe der Zahlungen würde dabei jeden Monat um 0,25% steigen. Wie hoch ist hierbei die letzte Ratenzahlung, wenn der Zinssatz  bei 8% p.a. liegt?

Hallo,

in unserer Lösung steht folgendes:

Schritt 1: Berechnen der Rate A1 im ersten Monat:

Ansatz: Barwert Schuld = Barwert Ratenzahlungen

S0 = A1 * [mm] \bruch{(\bruch{cm}{qm})^{T}-1}{(\bruch{cm}{qm})-1} [/mm]


Also:

A1 = S0 * [mm] \bruch{(\bruch{cm}{qm}-1)}{(\bruch{cm}{qm})^{T}-1} [/mm]

Schritt 2: Berechnen der Rate im letzten Monat

A120 = A1 * 1,0025^119 = 631,38


Ich frage mich wie man auf die Formel S0 = A1 * [mm] \bruch{(\bruch{c}{qm})^{T}-1}{(\bruch{c}{qm})-1} [/mm] kommt?

Das ist ja eine wachsende vorschüssige monatliche Rente und für so etwas ist doch die Barwertformel BW = R * [mm] \bruch{q^\bruch{T}{m}-c^\bruch{T}{m}}{q^\bruch{1}{m}-c^\bruch{1}{m}} [/mm] * [mm] q^-\bruch{(T-1)}{m} [/mm]

Beachte: in meiner Formel verwende q also den Zinssatz 1,08 p.a. , wobei in der Formel der Lösung qm also der monatliche Zinssatz 1,08^(1/12) verwendet wird. Zudem benutze ich die jährliche Wachstumsrate c also 1,0025^12, wobei in der Formel der Lösung der monatliche Wachstumsfaktor cm = 1,0025 verwendet wird.

Ich erhalte mit meiner Formel dasselbe Ergebnis. Aber wie kommt man auf die Formel in der Lösung?


LG
Mathics

        
Bezug
Ratenzahlung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:55 So 05.07.2015
Autor: Staffan

Hallo,

Du kannst die Formel - richtig geschrieben -

$BW=R [mm] \cdot \bruch{q^\bruch{T}{m}-c^\bruch{T}{m}}{q^\bruch{1}{m}-c^\bruch{1}{m}} \cdot q^{-\bruch{(T-1)}{m}} [/mm] $
so umformen, daß sie der zuerst genannten entspricht. Dazu ist im Zähler nur $ [mm] q^\bruch{T}{m}$ [/mm] und im Nenner
[mm] q^\bruch{1}{m} [/mm]  auszuklammern. Dann kann man mit [mm] $q^{\bruch{T}{m}} [/mm] kürzen und Zähler und Nenner mit (-1) multiplizieren. (Ich verstehe die Aufgabe so, daß der Kredit eine Laufzeit von 120 Monaten haben soll und die Zahlungen vorschüssig erfolgen.)

Gruß
Staffan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]