Randpunkte einer Menge < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:08 Do 12.01.2012 | Autor: | Ganz |
Hallo, ich habe hier eine Aufgabe mit der ich große Probleme habe.
Also die Aufgabe lautet:
Sei $A [mm] \subseteq \IR$ [/mm] und sei [mm] $\partial [/mm] A$ die Menge aller Randpunkte von A.
Zeige: i) [mm] $\partial A=\partial(\IR\setminus [/mm] A)$
ii) [mm] $\partial [/mm] A $ ist abgeschlossen.
Wir haben in der Vorlesung nur über Randpkt. gelernt, dass x ein Randpkt. von M ist, wenn in jeder Umgebung von x ein y element M und ein z element [mm] \IR\M [/mm] liegt.
Wenn ich mir das aufzeichne, weiß ich dass i stimmt. Aber ich kann es nicht beweisen und bei ii) habe ich überhaupt keine Idee.
Gruß
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:02 Do 12.01.2012 | Autor: | rainerS |
Hallo!
> Hallo, ich habe hier eine Aufgabe mit der ich große
> Probleme habe.
> Also die Aufgabe lautet:
> Sei [mm]A \subseteq \IR[/mm] und sei [mm]\partial A[/mm] die Menge aller
> Randpunkte von A.
> Zeige: i) [mm]\partial A=\partial(\IR\setminus A)[/mm]
>
> ii) [mm]\partial A[/mm] ist abgeschlossen.
>
> Wir haben in der Vorlesung nur über Randpkt. gelernt, dass
> x ein Randpkt. von M ist, wenn in jeder Umgebung von x ein
> y element M und ein z element [mm]\IR\setminus M[/mm] liegt.
> Wenn ich mir das aufzeichne, weiß ich dass i stimmt. Aber
> ich kann es nicht beweisen und bei ii) habe ich überhaupt
> keine Idee.
Zu (i): Schreib dir mal die Definition genau hin:
[mm] x\in \partial A [/mm] bedeutet, dass in jeder Umgebung von x sowohl Punkte von A als auch Punkte von [mm] $\IR\setminus [/mm] A$ enthalten sind.
[mm] x\in \partial(\IR\setminus A) [/mm] bedeutet, dass in jeder Umgebung von x sowohl Punkte von [mm] $\IR\setminus [/mm] A$ als auch Punkte von [mm] $\IR\setminus(\IR\setminus [/mm] A)$ enthalten sind. Was ist [mm] $\IR\setminus(\IR\setminus [/mm] A)$ ?
Zu (ii): Du zeigst, dass [mm] $\IR\setminus \partial [/mm] A$ offen ist, also dass es um jeden Punkt [mm] $x\in \IR\setminus \partial [/mm] A$ eine Umgebung [mm] $U\subset \IR\setminus \partial [/mm] A$ gibt, die x enthält. Tipp: Widerspruchsbeweis.
Viele Grüße
Rainer
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 20:31 Do 12.01.2012 | Autor: | Ganz |
Hallo, danke erstmal.
Also bei i) habe ich das jetzt in Quantoren geschrieben:
x [mm] \in \partial [/mm] A -> [mm] \forall [/mm] U(x) [mm] \exists [/mm] y [mm] \in [/mm] A und z [mm] \in \IR\setminus [/mm] A (y,z bel.)
x in [mm] \partial \IR\setminus [/mm] A-> [mm] \forall [/mm] U(x) [mm] \exists [/mm] y [mm] \in \IR\setminus [/mm] A und z [mm] \in \IR\setminus (\IR\setminus [/mm] A)
Und [mm] \IR\setminus (\IR\setminus [/mm] A)=A, da x.y.z bel. folgt doch die Gleichheit oder??
ii) [mm] z.zg.:\IR \setminus \partial [/mm] A ist offen
Ich weiß welchen Satz du benutzt. Aber ich weiß jetzt nicht wie ich zeigen soll, dass [mm] \IR \setminus \partial [/mm] A innere Punkte hat. Am Anfang nehme ich mir ein bel. x [mm] \in \IR \setminus \partial [/mm] A Aber ich weiß hier schon nicht mehr weiter
Gruß
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:40 Do 12.01.2012 | Autor: | rainerS |
Hallo!
Tipp: Das Symbol [mm] $\setminus$ [/mm] bekommst du mit \setminus .
> Hallo, danke erstmal.
> Also bei i) habe ich das jetzt in Quantoren geschrieben:
> x [mm]\in \partial[/mm] A -> [mm]\forall[/mm] U(x) [mm]\exists[/mm] y [mm]\in[/mm] A und z [mm]\in \IR\setminus[/mm]
> A (y,z bel.)
> x in [mm]\partial \IR\setminus[/mm] A-> [mm]\forall[/mm] U(x) [mm]\exists[/mm] y [mm]\in \IR\setminus[/mm]
> A und z [mm]\in \IR\setminus (\IR\setminus[/mm] A)
> Und [mm]\IR\setminus (\IR\setminus[/mm] A)=A, da x.y.z bel. folgt
> doch die Gleichheit oder??
Richtig.
>
> ii) [mm]z.zg.:\IR \setminus \partial[/mm] A ist offen
> Ich weiß welchen Satz du benutzt. Aber ich weiß jetzt
> nicht wie ich zeigen soll, dass [mm]\IR \setminus \partial[/mm] A
> innere Punkte hat. Am Anfang nehme ich mir ein bel. x [mm]\in \IR \setminus \partial[/mm]
> A Aber ich weiß hier schon nicht mehr weiter
Tipp: Widerspruchsbeweis, mit Benutzung des Ergebnisses aus i). Nimm an, es gebe ein [mm] $x\in \IR \setminus \partial [/mm] A$, das kein innerer Punkt ist.
Viele Grüße
Rainer
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 21:34 Do 12.01.2012 | Autor: | Ganz |
Ich kriege das nicht wirklich hin. Wenn ich mir ein x so wähle wie du das gesagt hat, dann weiß ich nach i) dass x auch kein innerer Punkt von
[mm] \partial [/mm] A ist. Aber wie kann ich das zum Widerspruch führen? Tut mir Leid ich habe noch ziemlich große Schwierigkeiten bei solchen Aufgaben.
Gruß
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:01 Do 12.01.2012 | Autor: | Marcel |
Hallo,
> Ich kriege das nicht wirklich hin. Wenn ich mir ein x so
> wähle wie du das gesagt hat, dann weiß ich nach i) dass x
> auch kein innerer Punkt von
> [mm]\partial[/mm] A ist. Aber wie kann ich das zum Widerspruch
> führen? Tut mir Leid ich habe noch ziemlich große
> Schwierigkeiten bei solchen Aufgaben.
ich habe genau gelesen, was Du geschrieben hast, daher hier erstmal:
Wenn Du zeigen willst, dass [mm] $O:=\IR \setminus \partial [/mm] A$ offen ist, dann hast Du nicht zu zeigen, dass [mm] $O\,$ [/mm] innere Punkte enthält, sondern, dass [mm] $O\,$ [/mm] nur innere Punkte enthält. Vielleicht hast Du Dich bei Deiner Rückfrage oben aber einfach nur unglücklich ausgedrückt, aber zu zeigen: $x [mm] \in [/mm] O [mm] \Rightarrow \exists \epsilon_0=\epsilon_0(x) [/mm] > 0: [mm] (x-\epsilon_0,x+\epsilon_0) \subseteq O\,,$ [/mm] d.h. es gibt zu jedem [mm] $x\,$ [/mm] eine [mm] ($x\,$-abhängige) $\epsilon_0$-Umgebung ($\epsilon_0 [/mm] > 0$) so, dass diese komplett in [mm] $O\,$ [/mm] enthalten ist.
Dazu nimmst Du nun an, es gebe ein $x [mm] \in [/mm] O$ derart, dass [mm] $x\,$ [/mm] kein innerer Punkt von [mm] $O\,$ [/mm] ist. Dann gibt es kein [mm] $\epsilon_0 [/mm] > 0$ derart, dass das offene [mm] $\epsilon_0$-Intervall ($\epsilon_0 [/mm] > 0$) um [mm] $x\,$ [/mm] komplett zu [mm] $O\,$ [/mm] gehört. Anders gesagt:
Für alle [mm] $\epsilon [/mm] > 0$ gilt mit [mm] $I_\epsilon:=I_\epsilon(x):=(x-\epsilon, x+\epsilon)$ [/mm] dann
[mm] $$I_\epsilon \cap (\IR \setminus [/mm] O) [mm] \not=\emptyset\,.$$
[/mm]
Nun hat aber [mm] $I_\epsilon$ [/mm] sicher auch Elemente aus [mm] $O\,.$ [/mm] (Schau' Dir mal die Intervallmitte an: Was steht da für ein Element?)
Kurz überlegen und folgern:
Also folgt $x [mm] \in \partial A\,.$ [/mm] Das widerspricht aber $x [mm] \in O\,.$ [/mm] (Warum? Wie hatten wir [mm] $O\,$ [/mm] definiert?)
Gruß,
Marcel
|
|
|
|