www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Randomisierte Summe
Randomisierte Summe < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Randomisierte Summe: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 08:38 Di 24.11.2009
Autor: Fry

Aufgabe
N sei eine Zufallsvariable mit [mm] $P(N\in\IN_0)=1$. [/mm] Weiter sei [mm] $X_1,X_2,$...eine [/mm] Folge von unabhängig und identisch verteilten und ebenfalls [mm] $\IN_0$-wertigen [/mm] Zufallsvariablen, die auch unabhängig von N sind. Es gelte [mm] $EN^2 <\infty$ [/mm] und [mm] $EX^2_1<\infty$. [/mm] Die randomisierte Summe [mm] $S_N$ [/mm] sei gegeben durch [mm] $S_N=\sum_{n=1}^{N}X_n$ [/mm]

a) Bestimmen Sie den Erwartungswert von [mm] $ES_N$. [/mm]
b) Zeigen Sie [mm] $Var(S_N)=Var(N)*(EX_1)^2+E(N)*Var(X_1)$ [/mm]

Hallo,

habe noch nie so einen Fall betrachtet, wo eine Zufallsvariable als Index auftaucht.
Im "normalen Fall" würde ich bei a) rechnen.
[mm] ES_N=E(\sum_{n=1}^{N}X_n)=\sum_{n=1}^{N}E(X_n)=N*EX_1 [/mm]

Aber das stimmt sicherlich hier nicht so ganz, oder ?
Weiß da jemand Rat?

Würde mich über eure Hilfe freuen. Vielen Dank!
LG
Fry

        
Bezug
Randomisierte Summe: Idee
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:03 Do 26.11.2009
Autor: KamiNeko

Knobel auch gerade an dieser Aufgabe.
Meine Idee ist:
[mm]E[S_N] = \left\[ \sum_{i=0}^{\infty} P(N = i) \cdot \sum_{k=0}^i \cdot E[X_k] \right\] [/mm] [mm] \\ [/mm]
[mm]E[S_N] = \left\[ \sum_{i=0}^{\infty} P(N = i) \cdot i \cdot E[X_1] \right\][/mm] [mm] \\ [/mm]
[mm] E[S_N] = E[N] \cdot E[X_1] [/mm]

Andererseits, führte ein Versuch auch zu folgender Modelierung von [mm]S_N[/mm]:

[mm] S_N = \left\{ \sum_{k=1}^{N(\omega)} X_k(\omega) | \omega \in \Omega \right\} [/mm]

Was mich aber bei der Berechnung des Erwartungswerts in eine Sackgasse gebracht hat.

Habe hier etwas ähnliches gefunden:
[]Beispiel
Auf seite 33 unter Beispiel 3.6. (Risikoprozess)

Bezug
                
Bezug
Randomisierte Summe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:09 Fr 27.11.2009
Autor: Fry

Danke schön für deine Antwort,

denke, dass [mm] $ES_N=EN*EX_1$ [/mm] richtig ist.

Gruß
Fry

Bezug
                        
Bezug
Randomisierte Summe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:07 So 29.11.2009
Autor: wolle238

Ich hänge auch grad voll an der Aufgabe...
Wie kommt ihr auf die Umformungen:
(1) $ [mm] E[S_N] [/mm] = [mm] \left\[ \sum_{i=0}^{\infty} P(N = i) \cdot \sum_{k=0}^i E[X_k] \right\] [/mm] $
(2) $ [mm] E[S_N] [/mm] = [mm] \left\[ \sum_{i=0}^{\infty} P(N = i) \cdot i \cdot E[X_1] \right\] [/mm] $
(3) $ [mm] E[S_N] [/mm] = E[N] [mm] \cdot E[X_1] [/mm] $

Ich komme mit der Umformung nur auf $ [mm] \mathbb{E}[S_N]= [/mm] N [mm] \cdot \mathbb{E}[X_1]$ [/mm]

[mm] \begin{matrix} \mathbb{E} [S_N] & = & \mathbb{E} \left[ \sum_{k=1}^{N} X_k \right] \\ & = & \mathbb{E} [X_1] + \mathbb{E} [X_2] + \ldots + \mathbb{E} [X_N] \\ & = & N \cdot \mathbb{E} [X_1] \end{matrix} [/mm]

Wo ist mein Fehler??

Bezug
                                
Bezug
Randomisierte Summe: Antwort
Status: (Antwort) fertig Status 
Datum: 14:23 So 29.11.2009
Autor: luis52

Moin,

schaul mal []hier und []hier.

vg Luis


Bezug
                                        
Bezug
Randomisierte Summe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:43 So 29.11.2009
Autor: wolle238

Hmmm.... Danke für deine Antwort... aber irgendwie bringt mich das nicht wirklich weiter! :( naja.... egal... weiter suchen.... :)

Bezug
        
Bezug
Randomisierte Summe: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 So 29.11.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]