www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - R^{2}-Menge enthält Folgen?
R^{2}-Menge enthält Folgen? < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

R^{2}-Menge enthält Folgen?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:17 Sa 17.05.2008
Autor: futur.perfekt

Hallo an alle!

Ich fertige gerade einen Beweis an, bin mir aber leider nicht 100%ig sicher in der Argumentation bzw. in meiner Ausdrucksweise. (Grundsätzlich sollte der Beweis aber stimmen! :-))

Ich möchte also sagen, dass [mm] A:={(\bruch{1}{n}, y): n\in\IN, y\in[-2,2]} [/mm] in [mm] X=R^{2} [/mm] _nicht_ abgeschlossen ist. Wenn A abgeschlossen wäre, müssten nämlich (laut Vorlesung) alle Grenzwerte konvergenter Folgen in A ebenfalls in A liegen.

Darf ich nun "einfach so" sagen, dass die Folgen [mm] \bruch{1}{n} [/mm] ja in A liegen, aber deren Grenzwert (0,y) nicht?

Würde mich über ein "Okay" oder eine Belehrung sehr freuen! Danke!!!

        
Bezug
R^{2}-Menge enthält Folgen?: Antwort
Status: (Antwort) fertig Status 
Datum: 11:36 Sa 17.05.2008
Autor: rainerS

Hallo!

> Hallo an alle!
>
> Ich fertige gerade einen Beweis an, bin mir aber leider
> nicht 100%ig sicher in der Argumentation bzw. in meiner
> Ausdrucksweise. (Grundsätzlich sollte der Beweis aber
> stimmen! :-))
>  
> Ich möchte also sagen, dass [mm]A:=\{(\bruch{1}{n}, y): n\in\IN, y\in[-2,2]\}[/mm]
> in [mm]X=R^{2}[/mm] _nicht_ abgeschlossen ist. Wenn A abgeschlossen
> wäre, müssten nämlich (laut Vorlesung) alle Grenzwerte
> konvergenter Folgen in A ebenfalls in A liegen.
>
> Darf ich nun "einfach so" sagen, dass die Folgen
> [mm]\bruch{1}{n}[/mm] ja in A liegen, aber deren Grenzwert (0,y)
> nicht?

Wenn ich dich richtig verstehe, ist deine Begründung OK, deine Formulierung aber zu ungenau!

A ist eine Teilmenge des [mm] $\IR^2$, [/mm] aber die Folge $1/n$ ist eine Folge in [mm] $\IR$. [/mm] Du meinst die Folge

[mm] (1/n,y)\in\IR^2 [/mm], [mm] $n\in\IN$, [/mm] für ein beliebiges, aber festes [mm] $y\in[-2,2]$. [/mm]

Viele Grüße
   Rainer



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]