www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Quasigruppe
Quasigruppe < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quasigruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:48 Mi 13.10.2010
Autor: hula

Guten Abend,

Ich habe eine Frage zur Definition von Quasigruppen:
Es besagt ja, dass in einer Quasigruppe die Gleichungen:

[mm] a \* x = b [/mm] und [mm] y \* a = b [/mm] für alle a, b eindeutig lösbar sind. Jetzt kann man aber das ganze ja auch so definieren:

Sei Q eine Menge mit den drei binären Verknüpfungen [mm](\*, \backslash , / ) [/mm] so dass gilt:
[mm] \begin{cases}1. &(x \* y)/y=x \\ 2. &x\backslash(x\*y)=y \\3. &(x/y)\*y=x \\4. &x\*(x\backslash y)=y \end{cases} [/mm]

aus Gleichung 3. und 4. kann ich schliessen, dass es Lösungen der Gleichungen  [mm] a \* x = b [/mm] und [mm] y \* a = b [/mm] gibt. Aber ich sehe nicht ein, wieso aus Gleichung 1. und 2. die Eindeutigkeit folgt. Ich hoffe jemand kann mir helfen. Danke und einen schönen Abend

        
Bezug
Quasigruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 21:02 Mi 13.10.2010
Autor: Sax

Hi,

wenn a*x = b gegeben ist, "multipliziere" auf beiden Seiten a\ und erhalte
a\ (a*x) = a\ b ,  also nach 2.  x = a\ b ist eindeutig.
Analog mit der anderen Gleichung.

Gruß Sax.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]