www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Quadrat
Quadrat < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quadrat: Rechenweg
Status: (Frage) beantwortet Status 
Datum: 17:34 Mo 23.07.2012
Autor: tinakru

Aufgabe
Überprüfen sie ob die Restklasse 185 +(221) im Ring IZ/(221) ein Quadrat ist.

Hallo zusammen,

ich weiß nicht genau, wie ich an obige Aufgabe rangehen soll. Meine Idee:

Zeige: ggT(185,221) = 1

Damit ist 185 eine Einheit in diesem Ring.

Und damit ist es kein Quadrat.

Stimmt das so


Grüße
Tina

        
Bezug
Quadrat: Antwort
Status: (Antwort) fertig Status 
Datum: 19:07 Mo 23.07.2012
Autor: hippias

Nein, diese Begruendung ist nicht zutreffend, denn eine Einheit kann ohne weiteres ein Quadrat sein - z.B. is 1 eine Einheit und ein Quadrat. Ich schaetze, ihr habt das Reziprozitaetsgesetz von Gauss o.s. ae. behandelt. Versuche es ein wenig damit.

Bezug
                
Bezug
Quadrat: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:20 Mo 23.07.2012
Autor: tinakru

Aufgabe
siehe oben

Oh nein dieses Gesetz sagt mir gar nichts.

Die Aufgabe muss irgendwie mitm euklidischen Algorithmus oder chinesischen Restsatz zu lösen sein. Aber ich hab keine Ahnung wie.

Bezug
                        
Bezug
Quadrat: Antwort
Status: (Antwort) fertig Status 
Datum: 21:14 Mo 23.07.2012
Autor: ms2008de

Hallo,
>  Oh nein dieses Gesetz sagt mir gar nichts.
>
> Die Aufgabe muss irgendwie mitm euklidischen Algorithmus
> oder chinesischen Restsatz zu lösen sein. Aber ich hab
> keine Ahnung wie.

Guter Ansatz mit dem Chinesischen Restsatz. Also mal die Ausgangslage:
[mm] x^{2}\equiv [/mm] 185 mod 221 soll nach x aufgelöst werden.
Da 221 wiederum 13*17 ist, ist das hier das selbe wie:
(I)  [mm] x^{2}\equiv [/mm] 3 mod 13 und
(II) [mm] x^{2}\equiv [/mm] 15 mod 17
Aus (I) folgt (z.B. durch probieren) x [mm] \equiv \pm4 [/mm] mod 13 und aus (II) x [mm] \equiv \pm7 [/mm] mod 17. Indem du nun diese Kongruenzgleichungssysteme mit Hilfe des Chinesischen Restsatz löst, solltest du auf die 4 Lösungen kommen.

Viele Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]