www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Punktweise Konvergenz
Punktweise Konvergenz < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Punktweise Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:06 Di 28.04.2009
Autor: Franzie

Aufgabe
[mm] f_{2}(x)=x^{n}*sin(\bruch{1}{x^{2}}) [/mm]

Hallo ihr Lieben!

Ich soll überprüfen, ob die obige Funktionenfolge im Intervall I=[0,1] punktweise konvergiert und die Grenzfunktion angeben und das Ganze dann nochmals auf gleichmäßige Konvergenz untersuchen.

Kann mir jemand einen Tipp geben, wie ich vorgehen muss, um das zu überprüfen? Kann mit der Epsilon-Definition nicht viel anfangen, da ich nicht weiß, wie ich diese hier anwenden muss und wie ich dann zur Grenzfunktion gelange.
Im Prinzip weiß ich auch, worin der Unterschied zwischen gleichmäßiger und punktweiser Konvergenz besteht, nämlich dass die punktweise Konvergenz von der Wahl des x abhängig ist. Aber wie setze ich das dann um?

Vielen Dank für eure Hilfe

        
Bezug
Punktweise Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 22:42 Di 28.04.2009
Autor: elvis-13.09

Hallo!

Schauen wir uns doch die Definitionen der beiden Konvergenzarten genauer an:
punktweise Konvergenz Wir nennen eine Funktioinenfolge [mm] (f_{n}) [/mm] punktweise konvergent gegen eine Funktion $f$, wenn für jedes [mm] x\in [/mm] X die Folge [mm] (f_{n}(x)) [/mm] gegen f(x) konvergiert.

Hierzu ein kleines Beispiel:
Betrachte die Funktion [mm] f_{n}(x)=x^{n+1}. [/mm] Dann konvergiert [mm] (f_{n}) [/mm] punktweise gegen die Funktion [mm] f:[0,1]\to\IR [/mm] mit f(x)=0 für [mm] x\in[0,1) [/mm] und f(x)=1 für x=1.

Tipp: Ich habe dieses Beispiel nicht umsonst gewählt. :-)
Du scheinst die Definiton gleichmäßiger Konvergenz zu kennen, anhand des Beispiels kannst du dir klar machen, weshalb diese nicht gleichmäßig gegen f konvergiert. Und anschließend kümmerst du dich um deine Funktion.:-)

Grüße Elvis




Bezug
                
Bezug
Punktweise Konvergenz: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 06:25 Mi 29.04.2009
Autor: Franzie

Okay, das Beispiel verstehe ich. Ich hatte bereits die Vermutung, dass meine Funktion auf dem Intervall punktweise gegen die Nullfunktion konvergiert. Allerdings müsste ich doch auch hier die 1 gesondert betrachten, oder nicht?
In meinem Beispiel konvergiert die Folge für x=1 dann praktisch gegen sin(1).
Aber nun weiß ich nicht, wie ich das mit der gleichmäßigen Konvergenz machen soll.
Kann ich einfach sagen, dass diese Funktion nicht gleichmäßig auf [0,1] konvergiert, weil ich bei der punktweisen Konvergenz im gleichen Intervall zwei verschiedene Grenzfunktionen habe?

Bezug
                        
Bezug
Punktweise Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 08:02 Mi 29.04.2009
Autor: angela.h.b.


> Okay, das Beispiel verstehe ich. Ich hatte bereits die
> Vermutung, dass meine Funktion auf dem Intervall punktweise
> gegen die Nullfunktion konvergiert. Allerdings müsste ich
> doch auch hier die 1 gesondert betrachten, oder nicht?
>  In meinem Beispiel konvergiert die Folge für x=1 dann
> praktisch gegen sin(1).

Hallo,

Deine Grenzfunktion f ist also:

[mm] f(x):=\begin{cases} 0, & \mbox{für } x\in[0,1[ \mbox{} \\ 1sin(1), & \mbox{für } x=1 \mbox{ } \end{cases}. [/mm]

Die Grenzfunktion ist offensichtlich nicht stetig,

Deine Funktionenfolge [mm] f_n [/mm] besteht hingegen aus stetigen Funktionen.

Beachte nun dies: wenn eine Folge stetiger Funktionen gleichmäßig konvergiert, dann ist die Grenzfunktion stetig. (Wichtiger Satz, auch für Klausuren.)

Die Konsequenz?

> Aber nun weiß ich nicht, wie ich das mit der gleichmäßigen
> Konvergenz machen soll.
> Kann ich einfach sagen, dass diese Funktion nicht
> gleichmäßig auf [0,1] konvergiert, weil ich bei der
> punktweisen Konvergenz im gleichen Intervall zwei
> verschiedene Grenzfunktionen habe?

Du hast nicht zwei verschiedene Grenzfunktionen - aber vielleicht meinst Du das Richtige...

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]