www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Punktemenge
Punktemenge < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Punktemenge: Überprüfung
Status: (Frage) beantwortet Status 
Datum: 16:01 So 17.01.2010
Autor: Mausibaerle

Aufgabe
Zeichne die Punktemenge, für die gilt:
a)   [mm] x^{2}-y^{2}\le0 [/mm]
b)   [mm] x^{2}+y^{2}-2xy\le1 [/mm]

Hallo Ihr Lieben,
ich bin mir mit diesem Thema ziemlich unsicher und würde deshalb gerne wissen, ob meine Überlegungen SInn machen.

Für a) ergeben sich mir zwei Ungleichungen, nämlich:
1. [mm] y\ge0 [/mm] : [mm] y\ge [/mm] x
2. y<0    : y<-x
Demnach ergibt sich in der Zeichnung im Koordiantensystem ein Bereich von den Winkelhalbierenden des 2. und 3. Quadranten, einschließlich der Geraden.

Für b) folglich:
1.  [mm] y\ge [/mm] x-1
2.  [mm] y\ge [/mm] x+1
Hier würde sich meinen Überlegungen nach der Bereich oberhalb von x+1 einschließlich der Gerade selber ergeben.

Hab ich mich da irgendwo verhaut oder macht es Sinn?!
Danke schön!! Schönen Sonntag noch...




        
Bezug
Punktemenge: Antwort
Status: (Antwort) fertig Status 
Datum: 16:54 So 17.01.2010
Autor: abakus


> Zeichne die Punktemenge, für die gilt:
>  a)   [mm]x^{2}-y^{2}\le0[/mm]
>  b)   [mm]x^{2}+y^{2}-2xy\le1[/mm]
>  Hallo Ihr Lieben,
>  ich bin mir mit diesem Thema ziemlich unsicher und würde
> deshalb gerne wissen, ob meine Überlegungen SInn machen.
>  
> Für a) ergeben sich mir zwei Ungleichungen, nämlich:
>  1. [mm]y\ge0[/mm] : [mm]y\ge[/mm] x
>  2. y<0    : y<-x

Hallo,
das geht mit einer Ungleichung: | y | [mm] \ge [/mm] | x |

>  Demnach ergibt sich in der Zeichnung im Koordiantensystem
> ein Bereich von den Winkelhalbierenden des 2. und 3.
> Quadranten, einschließlich der Geraden.zweiter Lösungsbereich liegt

Die beiden Lösungsbereiche liegen zwischen den Winkelhalbierenden des 1. und 2. Quadranten
sowie
zwischen den Winkelhalbierenden des 3. und 4. Quadranten.

>  
> Für b) folglich:
>  1.  [mm]y\ge[/mm] x-1
>  2.  [mm]y\ge[/mm] x+1
>  Hier würde sich meinen Überlegungen nach der Bereich
> oberhalb von x+1 einschließlich der Gerade selber
> ergeben.

Aus [mm]x^{2}+y^{2}-2xy\le1[/mm] folgt
[mm](x-y)^2\le1[/mm]
und daraus
| x-y [mm] |\le [/mm] 1.
Für [mm] x\ge [/mm] y (also für y [mm] \le [/mm] x) wird daraus x-y [mm] \le [/mm] 1 bzw. [mm] x-1\le [/mm] y. Zusammengefasst ergibt das
[mm] x-1\le [/mm] y [mm] \le [/mm] x. Das ist ein Streifen zwischen zwei parallelen Geraden.

Im Fall x<y würde [mm] -(x-y)\le [/mm] 1 gelten, also [mm] y\le [/mm] x+1. Zusammengefast ergibt das [mm] x Fas ist wieder ein Streifen zwischen paralelen Geraden, der sich an den Streigen des ersten Falles anschließt.
Ingesamt erhältst du den Streifen zwischen y=x-1 und y=x+1 (einschließlich Begrenzungsgeraden).

Gruß Abakus

>  
> Hab ich mich da irgendwo verhaut oder macht es Sinn?!
>  Danke schön!! Schönen Sonntag noch...
>  
>
>  


Bezug
                
Bezug
Punktemenge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:05 So 17.01.2010
Autor: Mausibaerle

Warum haben wir im Endefekt dann zwei verschiedene Lösungen?! Wo liegt denn dann mein Fehler, warum kann ich es nicht mit zwei Ungleichungen lösen?!


Bezug
                        
Bezug
Punktemenge: Antwort
Status: (Antwort) fertig Status 
Datum: 17:36 So 17.01.2010
Autor: abakus


> Warum haben wir im Endefekt dann zwei verschiedene
> Lösungen?! Wo liegt denn dann mein Fehler, warum kann ich
> es nicht mit zwei Ungleichungen lösen?!

Das kannst du schon machen, aber dann bitte auch gründlich.

Aus [mm] y^2\ge x^2 [/mm] Kann man tatsächlich zwei Fälle ableiten.
Fall 1: [mm] y\ge [/mm] 0
Dann gilt [mm] y\ge [/mm] |x| (nicht nur [mm] y\ge [/mm] x!)
Fall 1.1: [mm] x\ge [/mm] 0
Daraus wird [mm] y\ge [/mm] x [mm] \ge [/mm] 0
Fall 1.2: x<0 und damit (das brauchen wir gleich) gilt -x>0.  
Dann gilt [mm] y\ge-x, [/mm] ingesamt also y [mm] \ge-x>0. [/mm]

Auch im Fall 2 (y<0) musst du getrennt die Unter-Fälle [mm] x\ge [/mm] 0 und x<0 betrachten.
Gruß Abakus

>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]