| Projektion < Numerik < Hochschule < Mathe < Vorhilfe 
 
 
  |  |  
  | 
    
     |  | Status: | (Frage) überfällig   |   | Datum: | 10:12 Do 12.02.2009 |   | Autor: | Riley | 
 Hallo,
 ich habe eine Frage zu dem Projektionssatz:
 X [mm] \subseteq \mathbb{R}^n [/mm] nichtleer, abgeschlossen und konvex, sowie y [mm] \in \mathbb{R}^n [/mm] beliebig gegeben. Dann ist z [mm] \in [/mm] X genau dann gleich der Projektion von y auf X (also z = [mm] Proj_X(y)), [/mm] wenn
 [mm] (z-y)^T(x-z) \geq [/mm] 0 für alle x [mm] \in [/mm] X.
 
 Nun verstehe ich nicht, warum folgendes nach diesem Satz gilt:
 Seien [mm] \alpha, \beta [/mm] >0, d [mm] \in \mathbb{R}^n [/mm] gegeben und [mm] Proj_X(x [/mm] + [mm] \alpha [/mm] d) [mm] \not= Proj_X(x-\beta [/mm] d).
 Setze u:= [mm] Proj_X(x+\alpha [/mm] d) -x und v:= [mm] Proj_X [/mm] (x+ [mm] \beta [/mm] d)-x
 
 Wendet man nun den obigen Satz auf die Vektoren x + [mm] \alpha [/mm] d und [mm] Proj_X(x [/mm] + [mm] \beta [/mm] d) an, würde sich folgendes ergeben:
 
 [mm] u^T(u-v) \leq \alpha d^T(Proj_X(x+\alpha [/mm] d)- [mm] Proj_X(x [/mm] + [mm] \beta [/mm] d)).
 
 Eigentlich dachte ich, wäre das nur eine "banale" Umformung, aber irgendwie komm ich nicht hin. Ich müsste dann doch in dem Satz
 z = [mm] Proj_X(x [/mm] + [mm] \beta [/mm] d) und für x den Vektor x + [mm] \alpha [/mm] d einsetzen, oder??
 Aber es ist doch gar nicht gesagt, dass x + [mm] \alpha [/mm] d   noch in X ist, oder?
 Aber selbst wenn, komm ich nicht auf die Ungleichung :-(. Wäre super, wenn jemand weiter weiß!!
 
 Viele Grüße,
 Riley
 
 
 |  |  |  | 
 
  |  |  
  | 
    
     |  | Status: | (Mitteilung) Reaktion unnötig   |   | Datum: | 10:20 Mo 16.02.2009 |   | Autor: | matux | 
 $MATUXTEXT(ueberfaellige_frage)
 
 |  |  | 
 
 
 |