Produkt zweier Fkt. integrabel < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei (X,M,µ) ein Maßraum, f: X [mm] \to \IR [/mm] integrabel und g: X [mm] \to \IR [/mm] eine meßbare, beschränkte Funktion. Zeigen Sie, dass fg integrabel ist. |
Hallo Leute,
dass f integrabel ist, heißt ja, dass eine [mm] L^{1} [/mm] - Cauchyfolge [mm] f_{n} [/mm] von Treppenfunktionen existiert, die fast überall punktweise gegen f konvergiert.
Dass g meßbar ist, heißt wiederrum, dass eine Folge [mm] g_{n} [/mm] von Stufenfunktionen existiert, welche punktweise gegen g konvergiert.
Daraus müsste ich jetzt wohl eine [mm] L^{1} [/mm] - Cauchyfolge von Treppenfunktionen basteln, welche fast überall punktweise gegen fg konvergiert.
Wahrscheinlich wird diese Folge gerade [mm] fg_{n} [/mm] sein, aber wie zeige ich das jetzt am besten?
Liebe Grüße
|
|
|
|
> Sei (X,M,µ) ein Maßraum, f: X [mm]\to \IR[/mm] integrabel und g: X
> [mm]\to \IR[/mm] eine meßbare, beschränkte Funktion. Zeigen Sie,
> dass fg integrabel ist.
> Hallo Leute,
>
> dass f integrabel ist, heißt ja, dass eine [mm]L^{1}[/mm] -
> Cauchyfolge [mm]f_{n}[/mm] von Treppenfunktionen existiert, die fast
> überall punktweise gegen f konvergiert.
>
> Dass g meßbar ist, heißt wiederrum, dass eine Folge [mm]g_{n}[/mm]
> von Stufenfunktionen existiert, welche punktweise gegen g
> konvergiert.
>
> Daraus müsste ich jetzt wohl eine [mm]L^{1}[/mm] - Cauchyfolge von
> Treppenfunktionen basteln, welche fast überall punktweise
> gegen fg konvergiert.
>
> Wahrscheinlich wird diese Folge gerade [mm]fg_{n}[/mm] sein, aber
> wie zeige ich das jetzt am besten?
Das hängt auch davon ab, welche Sätze du benutzen darfst.
Da f und g messbar sind, ist auch f*g schonmal messbar.
Dann kannst du M wählen mit [mm] $|g(x)|\le [/mm] M$.
Wenn f integrabel ist, dann ist auch [mm] $\int M*|f|d\mu<\infty$.
[/mm]
Die Integrierbarkeit von f*g folgt dann aus [mm] $|f(x)*g(x)|\le [/mm] M*|f(x)|$
>
> Liebe Grüße
|
|
|
|
|
Erst einmal vielen Dank für die schnelle Antwort!
Da habe ich ja viel zu umständlich gedacht.
Deine Schritte leuchten mir ein, so wie ich das sehe benutzt du also den Satz von der dominierten Konvergenz.
Werd das später mal Schritt für Schritt ausformulieren.
Vielen Dank nochmal!
Liebe Grüße
|
|
|
|