www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Prädikatenlogik" - Prädikatenlogik/Variabl.-Beleg
Prädikatenlogik/Variabl.-Beleg < Prädikatenlogik < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Prädikatenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Prädikatenlogik/Variabl.-Beleg: Aufgabe
Status: (Frage) überfällig Status 
Datum: 16:31 So 16.05.2010
Autor: Shlomoe

Aufgabe
Seien P,Q,R jeweils ein- zwei- und dreistellige Prädikate und x,y,z beliebige Variablen. Sei M=(D,I) ein Modell mit:

D=(0,1,.....,9)

I(P) =(3,1)
I(Q) =(<3,9>,<6,0>,<2,1>,<1,2>,<0,6>)
I(R) =(<3,0,6>,<1,8,9>,<1,1,2>,<3,3,9>)

Für jede der folgenden Formeln, finde eine Belegung, unter der sie im Modell M gilt.

1) ∀x(P(x)⇒R(x,y,z)⋀Q(z,y))
2) ∀xP(x)⇒R(x,y,z)⋀Q(z,y)

Ich häng bei dieser Aufgaben irgendwie völlig durch.

Mir ist der Unterschied zwischen 1) und 2) schon klar (Quantorenskopus), aber ich kapier trotzdem nicht, mit welcher Belegung ich eine gültige Formel herstellen kann.

Da ich ja x mit einer 3 belegen muss, sollte ich ja auf der rechten Seite das gleiche Ergebnis erzielen, oder?

Kann mir bitte jemand weiterhelfen?

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
[http://www.onlinemathe.de/forum/Aufgabe-zur-Pr%C3%A4dikatenlogik] und http://www.matheboard.de/thread.php?threadid=419209

        
Bezug
Prädikatenlogik/Variabl.-Beleg: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Di 18.05.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Prädikatenlogik/Variabl.-Beleg: Rückfrage
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:36 Di 18.05.2010
Autor: Shlomoe

Würde mich immer noch über Hilfe freuen!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Prädikatenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]